Predicting air pollution in Almaty city using Deep Learning Techniques

Assel Nurlybayeva, Ali Abd Almisreb, Nooritawati Md Tahir

Abstract


Nowadays, in the era of urbanization and the growth of the social welfare of the population, megacities such as Almaty suffers from environmental problems such as air pollution. Air pollution adversely affects people's health, which leads to various harmful diseases. By predicting Particle Matter 2.5 (PM2.5) according to data of pollution particles and physical parameters we will reveal the effectiveness of measures taken by local authorities to meet the standards of the safety threshold for living beings. The paper’s main goal is to create a predictive model for particle matter 2.5 using a 3-layered sequential neural network model and gain the highest accuracy to simulate the continuation of the ecological situation in the city. The proposed model consists of four stages: data collection (from 6 stations), data pre-processing by treating missing values we deleted them and data normalization with function MinMaxScaller, building 3-layered sequential neural network and model evaluation using Mean squared error (MSE) metric, supported with a platform - Colab notebook and implemented using Python language. Based on experimental results, the forecast was defined as reliable - the strength of the model was proved using the MSE evaluation metric and equals 1e-5.

Keywords


TensorFlow, air pollution, deep learning, Almaty

Full Text:

PDF

References


Almalawi, A., Khan, A. I., Alsolami, F., Alkhathlan, A.,

Fahad, A., Irshad, K., ... & Qaiyum, S. (2022).

Arithmetic optimization algorithm with deep learning

enabled airborne particle-bound metals size prediction

model. Chemosphere, 134960.

https://doi.org/10.1016/j.chemosphere.2022.134960

Almetwally, A. A., Bin-Jumah, M., & Allam, A. A.

(2020). Ambient air pollution and its influence on human

health and welfare: an overview. Environmental Science

and Pollution Research, 27(20), 24815-24830.

https://doi.org/10.1007/s11356-020-09042-2

Al-Janabi, S., Mohammad, M., & Al-Sultan, A. (2020).

A new method for prediction of air pollution based on

intelligent computation. Soft Computing, 24(1), 661-

https://doi.org/10.1007/s00500-019-04495-1

Asha, P., Natrayan, L. B. T. J. R. R. G. S., Geetha, B. T.,

Beulah, J. R., Sumathy, R., Varalakshmi, G., &

Neelakandan, S. (2022). IoT enabled environmental

toxicology for air pollution monitoring using AI

techniques. Environmental research, 205, 112574.

https://doi.org/10.1016/j.envres.2021.112574

Assanov, D., Zapasnyi, V., & Kerimray, A. (2021). Air

Quality and industrial emissions in the cities of

Kazakhstan. Atmosphere, 12(3), 314.

https://doi.org/10.3390/atmos12030314

Cabaneros, S. M., Calautit, J. K., & Hughes, B. R.

(2019). A review of artificial neural network models for

ambient air pollution prediction. Environmental

Modelling & Software, 119, 285-304.

https://doi.org/10.1016/j.envsoft.2019.06.014

Gu, Y., Li, B., & Meng, Q. (2022). Hybrid interpretable

predictive machine learning model for air pollution

prediction. Neurocomputing, 468, 123-136.

https://doi.org/10.1016/j.neucom.2021.09.051

Huang, J., Na, Y., & Guo, Y. (2020). Spatiotemporal

characteristics and driving mechanism of the coupling

coordination degree of urbanization and ecological

environment in Kazakhstan. Journal of Geographical

Sciences, 30(11), 1802-1824.

https://doi.org/10.1007/s11442-020-1813-9

Janarthanan, R., Partheeban, P., Somasundaram, K., &

Elamparithi, P. N. (2021). A deep learning approach for

prediction of air quality index in a metropolitan city.

Sustainable Cities and Society, 67, 102720.

https://doi.org/10.1016/j.scs.2021.102720

Kabir, S., Islam, R. U., Hossain, M. S., & Andersson, K.

(2020). An integrated approach of belief rule base and

deep learning to predict air pollution. Sensors, 20(7),

https://doi.org/10.3390/s20071956

Karimian, H., Li, Q., Wu, C., Qi, Y., Mo, Y., Chen, G.,

& Sachdeva, S. (2019). Evaluation of different machine

learning approaches to forecasting PM2. 5 mass

concentrations. Aerosol and Air Quality Research, 19(6),

-1410. https://doi.org/10.4209/aaqr.2018.12.0450

Kim, J., & Lee, C. (2021). Deep particulate matter

forecasting model using correntropy-induced loss.

Journal of Mechanical Science and Technology, 35(9),

-4063. https://doi.org/10.1007/s12206-021-0817-4

Minh, V. T. T., Tin, T. T., & Hien, T. T. (2021). PM2. 5

Forecast System by Using Machine Learning and WRF

Model, A Case Study: Ho Chi Minh City, Vietnam.

Aerosol and Air Quality Research, 21, 210108.

https://doi.org/10.4209/aaqr.210108

Özkaynak, H., Baxter, L. K., Dionisio, K. L., & Burke,

J. (2013). Air pollution exposure prediction approaches

used in air pollution epidemiology studies. Journal of

exposure science & environmental epidemiology, 23(6),

-572. https://doi.org/10.1038/jes.2013.15

Pak, U., Ma, J., Ryu, U., Ryom, K., Juhyok, U., Pak, K.,

& Pak, C. (2020). Deep learning-based PM2.5 prediction considering the spatiotemporal correlations: A

case study of Beijing, China. Science of The Total

Environment, 699, 133561.

https://doi.org/10.1016/j.scitotenv.2019.07.367

Shang, Z., Deng, T., He, J., & Duan, X. (2019). A novel

model for hourly PM2. 5 concentration prediction based

on CART and EELM. Science of The Total

Environment, 651, 3043-3052.

https://doi.org/10.1016/j.scitotenv.2018.10.193

Tadano, Y. S., Potgieter-Vermaak, S., Kachba, Y. R.,

Chiroli, D. M., Casacio, L., Santos-Silva, J. C., ... &

Godoi, R. H. (2021). Dynamic model to predict the

association between air quality, COVID-19 cases, and

level of lockdown. Environmental Pollution, 268,

https://doi.org/10.1016/j.envpol.2020.115920

Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., &

Chi, T. (2019). A novel spatiotemporal convolutional

long short-term neural network for air pollution

prediction. Science of the total environment, 654, 1091-

https://doi.org/10.1016/j.scitotenv.2018.11.086

Zamani Joharestani, M., Cao, C., Ni, X., Bashir, B., &

Talebiesfandarani, S. (2019). PM2. 5 prediction based on

random forest, XGBoost, and deep learning using

multisource remote sensing data. Atmosphere, 10(7),

https://doi.org/10.3390/atmos10070373

Zhao, R., Gu, X., Xue, B., Zhang, J., & Ren, W. (2018).

Short period PM2. 5 prediction based on multivariate

linear regression model. PloS one, 13(7), e0201011.

https://doi.org/10.1371/journal.pone.0201011

Zeinalnezhad, M., Chofreh, A. G., Goni, F. A., &

Klemeš, J. J. (2020). Air pollution prediction using semiexperimental regression model and Adaptive NeuroFuzzy Inference System. Journal of Cleaner Production,

, 121218.

https://doi.org/10.1016/j.jclepro.2020.121218




DOI: http://dx.doi.org/10.21533/scjournal.v11i2.233

Refbacks

  • There are currently no refbacks.


Copyright (c) 2022 Assel Nurlybayeva, Ali Abd Almisreb, Nooritawati Md Tahir

ISSN 2233 -1859

Digital Object Identifier DOI: 10.21533/scjournal

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License