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1. INTRODUCTION  

   Although it is probably true that one can infer protein 

properties by given protein primary structure, current state 

of the art approaches are not able to implement this in 

practice. There is many different approaches and 

algorithms which are designed to predict the secondary 

structure of protein from it’s know primary sequence but 

no algorithm can predict with desirable accuracy. In this 

paper protein secondary structure are investigated based on 

protein primary structure and its physi

properties.  
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Abstract 

   In this paper, we propose a protein secondary structure prediction 

method based on the k-nearest neighborhood (KNN

position-specific scoring matrix (PSSM) profiles, propensity matrix of 

amino acids in three conformations (HEC) and three

features; hydrophobicity, net charges, and side chain mass. First, the 

with the optimal k-value is found. Then, the Euclidean distance of 26

dimensional data for each amino acid of a protein, to the 

all other proteins are computed. The conformations of the nearest seven 

amino acids are pooled. Majority of the pooled votes is given to the amino 

acid of the quarry protein as the conformation H, E, or C. 

a filter to refine the predicted results from KNN. After f

accuracy of the prediction goes up to the level of 90% f

This validates that considering PSSM, the propensity matrix, and 

physicochemical features may exhibit better performance.

 

 

 

 

  

Although it is probably true that one can infer protein 

properties by given protein primary structure, current state 

of the art approaches are not able to implement this in 

practice. There is many different approaches and 

ich are designed to predict the secondary 

structure of protein from it’s know primary sequence but 

no algorithm can predict with desirable accuracy. In this 

paper protein secondary structure are investigated based on 

protein primary structure and its physicochemical 

A protein primary sequence is composed of 20 different 

kinds of amino acids. Each of them is denoted by a 

different letter in the Latin alphabet as shown below.

   In this paper protein secondary structure are investigated 

based on protein primary structure and its physicochemical 

properties.Due to the differences of their side chain sizes, 

shapes, reactivity, and the ability to form hydrogen bonds

the secondary structure of a protein sequence comes from 

different folding of amino acids into helices, sheets and 

coils (Chou, and Fasman, 1978; Garnier et. al., 1978)

Furthermore, owing to the differences of the side chain 

sizes, the number of electric charges, coupled with the 

affinity for water, the tertiary structures of protein 

sequences are not all the same

sequences are similar. Thus, the exploration of molecular 
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After filtering, the 

the level of 90% for some proteins.  

propensity matrix, and 

better performance. 
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structures on protein sequences is divided into primary, 

secondary, tertiary, and even quaternary structures (Huang, 

and Chen, 2013). 

 

Table 1 Names and symbols of 20 amino acids 

#  Amino acid  Chemical  alphabet 

1 Alanine  Ala  A  

2 Arginine  Arg  R 

3 Asparagine  Asn  N 

4 Aspartic acid  Asp  D 

5 Cysteine  Cys C 

6 Glutamine  Gln  Q 

7 Glutamic acid  Glu  E 

8 Glycine  Gly  G 

9 Histidine  His  H 

10 Isoleucine  Ile I 

11 Leucine  Leu  L 

12 Lysine  Lys  K 

13 Methionine  Met  M 

14 Phenylalanine  Phe  F 

15 Proline  Pro  P 

16 Serine  Ser  S 

17 Threonine  Thr  T 

18 Tryptophan  Trp  W 

19 Tyrosine  Tyr Y 

20 Valine  Val V 

   Through x-ray analysis, given a protein primary 

sequence, its corresponding secondary structure may be 

obtained as follows. 

Primary sequence:  

MKRESHKHAEQARRNRLAVALHELASLIPAEWKQQ

NVSAAPSKATTVEAACRYIRHLQQNGST 

 

Secondary structure: 

CTHHHHHHHHHHHIIIHHHHBBBBHTTEEESSGGGT

SSSCCSSSHHHHHHH---HHHHTEECC 

 

   Eight secondary structure types appear in a secondary 

sequence; H(α-helix), G(310-helix), I( π-helix), E(β-

strand), B(isolated β-bridge), T(turn), S(bend), and -(rest). 

The eight structure classes are usually reduced to three 

classes of helix (H), sheet (E), and coil (C). In this paper 

the reduction is performed as follows. 

1) H, G and I to H;  

2) E to E;  

3) The rest to C 

 

2. FEATURE EXTRACTION 

   Five relevant kinds of features are extracted from protein 

sequences to predict protein secondary structure; i.e., 1) 

conformation parameters,  

2) Position specific scoring matrix (PSSM) profiles,  

3) Net charge,  

4) Hydrophobic, and  

5) Side chain mass.  

 

2.1 Extracting Primary and Secondary Sequences:  

Amino acid primary and secondary structure was extracted 

from the PDB website 

(http://www.rcsb.org/pdb/home/home.do) using the PDB 

codes of 25PDB. Then, we can further extract five 

different features from amino acid sequences as follows. 

2.2 Propensity matrix:  

   Intrinsic properties of amino acids enable us to figure out 

their tendency for being in certain conformation. The main 

idea of using propensity table is to get benefits from amino 

acid properties and find out statistically significant 

contribution to prediction capacity. In general, protein 

secondary structure is divided into three types: α-helix 

(H), β-sheet (E), and coil (C), so that there are three values 

for each amino acid.  In the feature extraction, all the 

conformation parameters are calculated from a data set. 

The conformation parameters for each amino acid Sij are 

defined as follows: 

��� =
���

��
, 	 = 1,2, . . ,30; � = 1,2,3.    (1) 

 In this formula, i indicates the 20 amino acids, and j 

indicates the 3 types of secondary structure: H, E, and C. 

Here, ai is the amount of the ith amino acid in a data set 

whereas aij is the amount of the ith amino acids with the 

jth secondary structure.  

 
Table 2. Conformation parameters for each amino acid in a data set of 

20.289 proteins 

 
 

"o" "H" "E" "C"

"A" 0.51 0.16 0.33

"R" 0.44 0.19 0.37

"N" 0.29 0.12 0.58

"D" 0.33 0.11 0.56

"C" 0.32 0.28 0.40

"Q" 0.47 0.15 0.38

"H" 0.30 0.19 0.50

"G" 0.17 0.13 0.70

"E" 0.50 0.14 0.37

"I" 0.39 0.36 0.25

"L" 0.49 0.23 0.28

"K" 0.42 0.16 0.42

"M" 0.43 0.20 0.37

"F" 0.38 0.30 0.32

"P" 0.19 0.09 0.72

"S" 0.29 0.16 0.54

"T" 0.28 0.25 0.47

"W" 0.41 0.27 0.32

"Y" 0.37 0.29 0.33

"V" 0.33 0.40 0.28
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   The conformation parameters for each amino acid in a 

data set of 20347 proteins are shown in Table 2. The 

reason of using conformation parameters as features is that 

the folding of each residue has something to do with 

forming a specific structure. 

 

2.3 PSSM Profiles 

   PSSM profiles are generated by PSIBLAST (Position 

Specific Iterative-Basic Local Alignment Search Tool) 

program (Alteschul et al., 1997). Since PSSM profiles are 

involved with biological evolution, we consider them as 

features in our work. A PSSM profile has L×20 elements, 

where L is the length of a query sequence. These profiles 

are then used as the input features to feed an SVM, 

employing a sliding window method. 

The position weight matrix was introduced by American 

geneticist Gary Stormo and colleagues in 1982 (Gary.S et 

all, 1982). PSSM has found good alternative to consensus 

sequence.  Consensus sequences had previously been used 

to represent patterns in biological sequences, but had 

difficulties in the prediction of new occurrences of these 

patterns. First, a database containing all known sequences 

(or non-redundant database) is selected. Then, low 

complexity regions are removed from the nr database. 

Finally, PSI-BLAST program is used to query each 

sequence in 25PDB, and generates PSSM profiles after 

three iterations. Here, multiple sequence alignment (MSA) 

and BLOSUM62 matrix (Henikoff, and Henikoff, 1992) 

are used in this process. 

 

2.4 Net Charges 

   One of the physical properties of amino acids is their 

charges. Five of the amino acids are charged amino acids: 

R, D, E, H, and K. Residues which have similar electric 

charge repel each other and it interrupts the hydrogen 

bonds in the main chain of amino acids. It prevents the 

formation of α-helix. In addition, continues β-sheet 

formation are not possible when the residues have similar 

charges. This physical property of amino acids helps to 

predict secondary structure of proteins.  Net charge of each 

amino acid can be obtained from from Amino Acid index 

database (Kawashima, et. al, 1999; Kawashima, and 

Kanehisa, 2000; Kawashima, et. al, 2008; Nakai, et. al., 

1998; Tomii, and Kanehisa, 1996), as shown in Table 3. 

 
Table 3. Net charge of amino acids 

Aacids Netchrg Aacids Netchrg 
A  0  L  0 

R  +1  K  +1 

N  0  M  0 

D  -1  F  0 

C  0  P  0 

E  -1  S  0 

Q  0  T  0 

G  0  W  0 

H  +1  Y  0 

I  0  V  0 

 

 

 

2.5 Hydrophobicity  

   Some of the amino acids do not like to reside in an 

aqueous environment and they called hydrophobic amino 

acids. They are generally seen buried within the 

hydrophobic core of protein since for protein folding, polar 

residues prefer to stay outside of protein in order to 

prevent non polar residues from exposing to polar solvent. 

Hydrophobic protein can be used as one of the parameter 

to predict the secondary structure of proteins. In α-helix, 

generally hydrophobic segments are followed by 

hydrophilic segment. Unlike α-helix, β-sheet structure is 

affected by the environment due to its structural 

characteristics so it is not a case in β-sheets. The 

hydrophobic values of amino acids can also be obtained 

from Amino Acid index database (or AAindex) as shown 

in Table 4. Positive values indicated more hyrophobicity. 

  
Table 4. Hydrophobic values of amino acids 

Aacids Hydphb Aacids Hydphb 

A 1.8 L 3.8 

R -4.5 K -3.9 

N -3.5 M 1.9 

D -3.5 F 2.8 

C 2.5 P -1.6 

E -3.5 S -0.8 

Q -3.5 T -0.7 

G -0.4 W -0.9 

H -3.2 Y -1.3 

I 4.5 V 4.2 

 

2.6 Side Chain Mass  

   Although the basic structure as shown in Fig. 3 is the 

same for 20 amino acids, the size of the side chain R group 

still influences structure folding. Side chains of amino 

acids are the structural elements which make amino acids 

different. These unique R groups influencing the 

conformation of protein secondary structure and they can 

give a clue to predict the secondary structural element 

depends on their existence in certain position. The site 

chain R group form in the outside of the main chain of α-

helix structure but when large R groups distributed 

continuously, they can make α-helix structure unstable. 

For instance, proline is composed of 5 atoms in a ring, 

which is difficult to form hydrogen bonds. In addition, 

generally it is observed that R group of B-sheet structure is 

smaller than those of other structure. Side chain mass is 

considered one of the important features that can 

contribute to predict secondary structure of proteins. 

 

 

  
Figure 1. Basic structure of amino acids. 
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Table 5. Side chain mass of amino acids 

Aacids mass Aacids mass 

A 15.0347 L 57.1151 

R 100.1431 K 72.1297 

N 58.0597 M 75.1483 

D 59.0445 F 91.1323 

C 47.0947 P 41.0725 

E 73.0713 S 31.0341 

Q 72.0865 T 45.0609 

G 1.0079 W 130.1689 

H 81.0969 Y 107.1317 

I 57.1151 V 43.0883 

 

3. K-NEAREST NEIGHBOR TECHNIQUE (KNN) 

   The KNN used in the experiments is a classifier for 

predicting the secondary structure H, E, and C. Three-fold 

cross-validation is employed on the 25PDB data set to find 

the optimal neighbor number k. 

 

 
 
Figure 2. Majority votes of seven nearest neighbors of the point in the 

center of the circle is green. 

   Here, the distance of the data vectors are first measured 

by Euclidean distance. Then other distance measures are 

also used for comparison.  

 

Filter 

   It is not possible for amino acid to form α-helix or β-

sheet alone. Incorrect predicted results should be 

eliminated by replacement with reasonable conformation if 

single conformation exists in the predicted sequences. For 

the current scanning window (i-1, i, i+1) in the predicted 

secondary structure, two possible structures could happen 

at position i: 

   Case H: if str(i-1) and str(i+1) are H, then str(i) is not 

changed; otherwise, extend the examined segment to (i-3, 

i-2, i- 1, i, i+1, i+2, i+3) and replace str(i) with the 

majority structure in the examined segment. 

   Case E:  if str(i-1) or str(i+1) is E, then str(i) is not 

changed; otherwise, extend the examined segment to (i-3, 

i-2, i- 1, i, i+1, i+2, i+3) and replace str(i) with the 

majority structure in the examined segment. 

 

 

4. EXPERIMENTS 

A.   Data Set 

   Many different dataset are used for predicting secondary 

structure of proteins, such as RS126 (Rost, and Sander, 

1993), CB513 (Cuff, and Barton, 1999), CASP (Moult, et. 

al., 1995), EVA (Eyrich, et. al., 2001). The 25PDB dataset 

selected for our studies the similarity between sequences 

of 25PDB is less than 25%. 25 PDB designed for 

predicting protein classes but it is found useful for 

predicting the secondary structure of protein since 

similarity is very small, this let us to predict secondary 

structure of protein more accurately.   

25PDB contain 1674 amino acid sequences and it can be 

downloaded from 

http://biomine.ece.ualberta.ca/SCPRED/SCPRED.htm 

 

B.   Performance Measures 

   Two kinds of performance measures are frequently used 

in protein secondary structure prediction; i.e., Q3 or three-

state overall per-residue accuracy. Q3 is a residue based 

measure of three-structure overall percent-age of correctly 

predicted residues, which can be represented as Formula 

(2). 

�� =
��������

�
     (2) 

where N is the total number of predicted residues, NH is 

the correctly classified secondary structure for helix, NE 

for sheet, and NC for coil. 

 

C. Experimental Results 

   In this section, first we expose the accuracy in secondary 

structure prediction by charts which shows the frequencies 

of proteins at each accuracy level. It is seen that in all-α, 

and all-β protein classes up to 90% accuracy is achieved 

(Figure 3., and Figure 4.). For α+β, and α/β protein classes 

this drops up to 80% accuracy (Figure 5., and Figure 6.).  

 

 
Figure 3. In all-α protein classes up to 89% secondary structure 
prediction accuracy is achieved 
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Figure 4. In all-β protein classes up to 86% secondary structure prediction 
accuracy is achieved 

 
Figure 5. In α+β protein classes up to 80% secondary structure prediction 

accuracy is achieved 

 

 
 
Figure 6. In α/β protein classes up to 77% secondary structure prediction 
accuracy is achieved 

 

 

D. Filtering Effect 

   For all-α protein class, filtering of outputs improved the 

mean accuracy from 65.73% to 67.09%. The frequencies 

of the percentage increases in accuracy are shown in 

Figure 7 below. 

 

 
Figure 7. The effect of filtering for all-α protein class. Frequencies of the 

percentage increases in accuracy is on the vertical axis. 

 

   For all-β protein class, filtering of outputs improved the 

mean accuracy from 59.60% to 61.60%. The frequencies 

of the percentage increases in accuracy are shown in 

Figure 8 below. 

 

 
Figure 8. The effect of filtering for all-β protein class. Frequencies of the 

percentage increases in accuracy is on the vertical axis. 

 

   For α+β protein class, filtering of outputs improved the 

mean accuracy from 49.97% to 52.80%. The frequencies 

of the percentage increases in accuracy are shown in 

Figure 9 below. 

 
Figure 9. The effect of filtering for α+β protein class. Frequencies of the 

percentage increases in accuracy is on the vertical axis. 
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   For α/β protein class, filtering of outputs improved the 

mean accuracy from 52.07% to 54.36%. The frequencies 

of the percentage increases in accuracy are shown in 

Figure 10 below. 

 
Figure 10. The effect of filtering for α+β protein class. Frequencies of the 

percentage increases in accuracy is on the vertical axis. 

 

 

   Average accuracies without the filter and with the filter 

are given in Table 6. 

Table 6. Average accuracies without the filter and with the filter, and 

improvements due to filtering. 

 All-α All-β α+β α/β 

Filtered 67.09 61.60 52.80 54.36 

Not Filtered 65.73 59.60 49.97 52.07 

Improvement +1.36 +2.00 +2.83 +2.29 

 

5.  CONCLUSIONS 

   In this paper, we propose a protein secondary structure 

prediction method using PSSM profiles and four 

physicochemical features, including conformation 

parameters, net charges, hydrophobic, and side chain mass. 

In the experiments, the KNN with the optimal neighbor 

size k found first. Then, the majority of the conformations 

of the k neighbors of a given amino acid in a certain class 

is given to this amino acid as secondary structure. 

   Finally, we use the filter to refine the predicted results 

from the KNN. Although the tool KNN is the simplest one 

of all methods, we succeeded accuracy in secondary 

structure prediction of proteins up to 90% for the 25PDB 

data set. In summary, considering these physicochemical 

features and PSSM matrix, results in better performances. 
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