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1. INTRODUCTION  

In many fields of bioinformatics the knowledge about

structural classes of proteins is important in 

2005; Kurgan and Homaeian, 2006; Costantini 

andFacchiano, 2009). As of Februrary 2015, 

2.05, SCOP experts manually classified 71,000 of the 

110,000 total PDB entries, and about 90% of them belong 

to the four major classes;all-α, all-β, α+β and 

(Andreeva et al., 2004; Murzinet al., 1995). The 

classification of protein structures in SCOP isdone 

manually based on proteins with known tertiary structures.
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Abstract 

Knowledge about structural classes of proteins plays an important role in 

inferring tertiary structure and function of a protein. One of the major 

problems with the existing algorithm for the prediction of protein 

structural classes is low accuracies for proteins from 

classes. To improve accuracies, one needs to extract features with high 

representation power. Several authors proposed enormous number of 

features. Some of them redundant, most of them overlapping. In this 

paper, most prominent features proposed in the literature 

Features extracted from Position Specific Scoring Matrices 

excluded and left as the subject matter of another paper. 

combinations of these features are used to classify 

dataset, 25PDB, and 30FB, with sequence similarity lower than 

30%, respectively. Comparison of our results with others shows that to 

find the best combination is very important and may provide a cost

effective alternative to predict protein structural class in particular for 

low-similarity datasets. 

 

 

 

the knowledge about the 

 (Chou,2004, 

2005; Kurgan and Homaeian, 2006; Costantini 

As of Februrary 2015, in SCOPe 

classified 71,000 of the 

, and about 90% of them belong 

and α/β classes 

(Andreeva et al., 2004; Murzinet al., 1995). The 

classification of protein structures in SCOP isdone 

manually based on proteins with known tertiary structures. 

Since the rapid development of the genomics and 

proteomics,there has been enormous accumulation of data 

on the amino acidsequences of proteins. Therefore, the 

manual method apparentlycannot cope with the demand 

for rapid classification. Hence overthe past two decades, 

researchers have made unremitting effortsin computational 

prediction of structural classes on the basis ofthe amino 

acid sequences of the proteins. There are generally 

twoaspects in the computational prediction: feature vector 

andclassification algorithm.  

   A Large number of sequence features have been applied 

to representprotein sequences, including amino acid 

composition(Nakashima, et. al., 1986; Zhou, 1998; Chou, 

1999),pseudo amino acid composition

and Li, 2007; Xiao et. al., 2006; Zhang, and Ding, 2007; 

Similarity Sequences 

Knowledge about structural classes of proteins plays an important role in 

inferring tertiary structure and function of a protein. One of the major 

problems with the existing algorithm for the prediction of protein 

roteins from α+β and α/β  

classes. To improve accuracies, one needs to extract features with high 

er. Several authors proposed enormous number of 

features. Some of them redundant, most of them overlapping. In this 

atures proposed in the literature are reviewed. 

Matrices (PSSM) are 

of another paper. Also some 

combinations of these features are used to classify a low-homology 

FB, with sequence similarity lower than 25% and 

%, respectively. Comparison of our results with others shows that to 

find the best combination is very important and may provide a cost-

class in particular for 

Since the rapid development of the genomics and 

enormous accumulation of data 

on the amino acidsequences of proteins. Therefore, the 

manual method apparentlycannot cope with the demand 

for rapid classification. Hence overthe past two decades, 

researchers have made unremitting effortsin computational 

ediction of structural classes on the basis ofthe amino 

acid sequences of the proteins. There are generally 

twoaspects in the computational prediction: feature vector 

sequence features have been applied 

representprotein sequences, including amino acid 

, et. al., 1986; Zhou, 1998; Chou, 

,pseudo amino acid composition(Chou, 2001; Lin, 

and Li, 2007; Xiao et. al., 2006; Zhang, and Ding, 2007; 
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Zhang et. al., 2008), polypeptidecomposition (Luo, et. al., 

2002; Sun, and Huang, 2006), functional domain 

composition (Chou, andCai, 2004), PSIBLASTprofile 

(Chen, et. al., 2008;Liu, et. al., 2010), predicted secondary 

structure information(Kurgan, et. al., 2008a, 2008b; 

Mizianty, and Kurgan, 2009) and amino acid sequence 

reverse encoding (Deschavanne, andTuffery, 2008; Yang, 

et. al, 2009). 

Meanwhile, many machine learning algorithms have been 

alreadyused to implement the protein structural class 

predictions, such asneural network (Cai, G.P. Zhou, 2000), 

support vector machine (Anand, et. al., 2008; Cai, et. al, 

2001, 2002; Chen, et. al., 2006; Qiu, et. al., 2009),fuzzy 

clustering (Shen, et. al., 2005), Bayesian classification 

(Wang, and Yuan, 2000), rough sets (Cao, et. al., 

2006),information discrepancy (Jin, et. al., 2003; 

Kedarisetti, et. al., 2006; Zhang, et. al., 2009) and 

classifier fusion technique(Feng, et. al., 2005; Kedarisetti, 

et. al., 2006; Cai, et. al., 2006). The existing sequence 

representation methods and classificationalgorithms have 

been extensively reviewed (Chou, 2005; Kurgan and 

Homaeian, 2006). 

Prediction accuracies of various different structural 

classprediction methods are given in Table 1. 

 

Table 1 

Comparison of prediction accuracies among various 

different structural classprediction methods. 

 

Data Method Accuracy (%) 

  α β α/β α+β O.all 

25PDB SCPRED  92.6  80.1  74.0  71.0  79.7 

MODAS  92.3  83.7  81.2  68.3  81.4 

LIU-JIA  92.6  81.3  81.5  76.0  82.9 

ZHANG 95.0 85.6 73,2 81.5 83.9 

KONG 94.1 87.1 74.4 81.1 85.0 

D675 SCPRED  89.1  81.8  90.4  58.2  79.5 

MODAS  89.9  81.8  84.2  65.9  80.0 

LIU-JIA 90.8  81.4  84.7  68.6  82.0 

ZHANG – – – – – 

KONG – – – – – 

 

 

 

In this paper,we propose a newcombination of feature set. 

When testingwas made on the 25PDB dataset including 

1670 (three of the 1673 proteins in 25PDB dataset are 

removed because of their deficiencies) proteins 

withtwilight-zone similarity, an overall average prediction 

accuracy of80.6% was obtained with whichis 17.9% 

higher than the most competing methods using 

onlyinformation extracted from amino acid sequences 

(Kurgan andChen, 2007; Kurgan et al., 2008b; Mizianty 

and Kurgan, 2009). On the 30FB dataset including 10289 

proteins with less than 30% similarity, an overall average 

prediction accuracy of 80.6% was obtained, whichis also 

17.9% higher than methods using onlyinformation 

extracted from amino acid sequences 

Though the overall prediction accuracy has been 

improved, theprediction accuracies for α+β and α/βclasses 

are still unsatisfactory(73.6% on average) (Table 1). In this 

study, we tried to furtherimprove the prediction accuracy 

in a different way. The 11features were selected by 

knowledge-based rational design ratherthan random 

screening. Three of the features were speciallydesigned to 

improve the prediction accuracies for proteins 

fromα+βand α/β classes. The prediction performed with 

an optimizedsupport vector machine revealed an 

improvement in predictionaccuracy, especially for proteins 

from α+βand α/β classes. 

 

 

2.FORMULATION OF THE PROBLEM 

(a) Database  

Three widely used datasets with low sequence identity 

wereused in this study to compare the accuracy of our 

prediction withthose of existing prediction methods. The 

25PDB dataset is thetouchstone for the prediction of 

protein secondary structuralclasses due to a comparatively 

larger number of proteins, 1670 proteins anddomains, and 

low identity among samples, average identity of25% 

(Kurgan and Homaeian, 2006). The 30FB dataset, a huge 

number of 10289 proteinsand domains with average 

identity of 30%,which is created from SCOPE database by 

the authors and their research group at International 

University of Sarajevo, Faculty of Engineering and Natural 

Sciences. 

 

(b) Features 

SCOP scientists manually classify proteins into different 

structural classesaccording to their 3-D structures; hence 

the featuresderived from these structures might directly be 

applied to theprediction of protein structural classes. In 

this paper, most prominent features proposed in the 

literature are reviewed. Features extracted from Position 

Specific Scoring Matrices are excluded and left as the 

subject matter of another paper.In this article three of these 

feature sets will be presented: Liu, and Jia (Liu, and 

Jia,2010), Zhang (Zhang, et. al., 2011), and Kong, and 

Zhang (Kong, and Zhang,2014). 

Liu, and Jia (2010) Features 

From the beginning, a standard for protein structure 

classificationis the content of the secondary structural 

elements (Chou,2005), ConH and ConEthat reflect the 

contents of Hand E residues, respectively (Kurgan et al., 

2008a, 2008b).The sequence length was denoted by N. 

(1) P1  and P2  represent the content of residues H 

(ConH) and E (ConE), respectively, in the secondary 

structural sequence. 

(2) P3 and P4 represent normalized length of the longest 

a-helix (MaxSegH/N) and b-strand (MaxSegE/N), 

respectively.The sequence length was denoted by N. 
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(3) P5 and P6 represent the normalized average length of 

a-helices (AvgSegH/N) and b-strands (AvgSegE/N), 

respectively. 

(4) P7(CMVH) and P8(CMVE) represent the composition 

moment vectors H and E, respectively, which are 

formulated as 

�� = ∑ ����	
��
(
��) ,			�� = ∑ �����
��
(
��)    (1) 

wherenH and nE are the total number of H and E residues 

in thesequence of the secondary structure, respectively; 

nHj and nEj are the jth position (in the secondary structure 

sequence) of H and Eresidues, respectively. 

(5) P9 represents the normalized alternating frequency of 

a-helices and β-strands (Altn/N). 

(6) P10 and P11 represent the proportion of parallel β-

sheets and anti-parallel β-sheets, respectively, which can 

be calculated as follows: 

��� = ���
�������� ,			��� = ����

��������,  (2) 

In (5) and (6) three novel features of the secondary 

structure were proposedon the basis of the structural 

characteristics of proteins from α/βand α+β classes.(Liu, 

and Jia, 2010) 

α-helices and β-strands are usually separated in α/β 

proteins,but are usually interspersed in α+β proteins. In 

α/β proteins,α-helices and β-strands alternate more 

frequently than in α+βproteins. Therefore, the first feature 

was chosen as thealternating frequency of α-helices and β-

strands (Altn). As an example in Fig. 1A, α-helices andβ-

strands alternate two times (Altn=2). 

 

 
(A) 

 

 
(B) 

Fig. 1. (A) and (B), amethod for the determination of β-

strands composingparallel β-sheets or anti-parallel β-

sheets. 

Consider that the β-strands in α/βproteins are usually 

composedof parallel b-sheets, while the β-strands in 

α+βproteins are usuallycomposed of anti-parallel β-sheets, 

the second and the third featuresare based on the number 

of β-strands that form parallel β-sheets(PnE) and the 

number of β-strands that form anti-parallel (APnE)β-

sheets, respectively (Fig. 1A, B). Liu, and Jia proposed 

that if two β-strands(segments of E) are separated by α-

helix (segments of H), these twoβ-strands would form 

parallel β-sheets. Otherwise, they would formanti-parallel 

β-sheets.  

3. CLASSIFICATION ALGORITHM CONSTRUCTION 

Support vectormachine (SVM) has been successfully used 

in theprediction of protein secondary structural class 

because of its highaccuracy (Kurgan et al., 2008a, 2008b). 

The SVM classifier mapsfeature vectors into multi-

dimensional space by using kernelfunction K(x), as a x-

insensitive loss function and regulatory parameterC. x-

insensitive loss function and regulatory parameterC. Here, 

Guassian kernel function  

�(�� , ��) 	= 	���(	−	!"��, ��"#)	   (3) 

ischosen for its superiority for solving nonlinear problems 

compared with other kernel functions (Yuan et al., 2005). 

The parameterization of SVM was performed through a 

grid search over  γ and C values based on cross-validation 

on datasets. The final classifier uses C = 362 andγ= 0.7. 

 

RESULTS 

The prediction method was examined with 25PDB, and 

30FB datasets.Our results on the two datasets with these 

features are as in Table 2 

 

Table 2 

Comparison of prediction accuracies among various 

different structural class prediction methods. 

 
Data Method Accuracy (%) 

  α β α/β α+β O.all 

25PDB SVM 85.3 83.2 69.7 58.3 74.1 

ANN 90.2 84.1 74.0 64.4 78.2 

EUCLID 85.3  80.0 44.9 71.7 70.5 

MAHAL 81.8 72.7 45.5  81.8 70.5 

CAMBE 88.0 75.3 70,5 81.9 78.9 

MANH 89.4 80.3 72.3 54.2 74.1 

30FB SVM 72.5 69.0 60.2 46.1 62.0 

 

Zhang,Ding, and Wang (2011) Features 

Zhang,Ding, and Wang (Zhang, et. al., 2011) proposed 

eleven features where eight of them are the same as in Liu, 

and Jia (Liu, and Jia, 2010), and three newly-designed 

features are rationally utilized to reflect thegeneral 

contents and spatial arrangements of the 

secondarystructural elements of a given protein sequence.  

The three novel features of Zhang,Ding, and Wang are 

derived from the secondarystructure sequences of proteins 

to characterize the distributions ofα helices and β strands, 

and hopefully that they could be used todistinguishα+β, 

and α/βclasses. 
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As the first step, they reduced a secondary 

structuresequence into a segment sequence, which is 

composed of helixsegments and strand segments denoted 

by αand β, respectively. 

Here, α-helixsegment refers to a continuous segment of 

allHsymbols, and β-strandrefers to a continuous segment 

of all E symbols in the secondary structure sequence. In 

orderto focus on the arrangement of α-helix and β-strand 

segments, thecoil segments are ignored in the reduced 

segment sequence. 

For example, given a secondary structure sequence  

CCEEECCCHHHEEEHHHHCCCCCHHHCCEEEEEEC  

its reduced segmentsequence is βαβααβ, in which the α-

helices and β-strands arelargely interspersed, suggesting 

that the corresponding proteinmore likely belongs to the 

α/β class rather than α+β class. 

The transition probability matrix (TPM) of the reduced 

segmentsequence can be defined as follows: 

$�% = &�'' �'(�(' �(()                                                        (4) 

They are computed by the following formula: 

��� = *

+

+��
+, 	 , -./�� + /�# ≠ 0								0,																		-./�� +/�# = 0

3                     (5) 

where456 represents the number of transitions from the ith 

element, to the jth element of state space {α,β}. 

In order to measure the degree of segment aggregation, 

wechoose 789and798, the two of the above four transition 

probabilitiesto be included into our feature set. Note that �'' + �'( = 1, ;<=�(' + �(( = 1.                           (6) 

The third feature to be extracted isthe probability of 

helixor strand segments occurring in a segmentsequence, 

denoted by ?8or ?9. Only ?8 is used in this workdue to ?8+?9= 1. 

 

RESULTS 

The prediction method was examined with 25PDB, and 

30FB datasets.Our results on the two datasets with these 

features are as in Table 3. 

 

Table 3. Comparison of prediction accuracies among 

various different structural class prediction methods. 

Data Method Accuracy (%) 

  α β α/β α+β O.all 

25PDB SVM 85.3 83.2 69.7 58.3 74.1 

ANN 90.2 84.1 74.0 64.4 78.2 

EUCLID 85.3  80.0 44.9 71.7 70.5 

MAHAL 81.8 72.7 45.5  81.8 70.5 

CAMBE 88.0 75.3 70,5 81.9 78.9 

MANH 89.4 80.3 72.3 54.2 74.1 

30FB SVM 72.5 69.0 60.2 46.1 62.0 

 

 

Kong, and Zhang (2014) Features 

The secondary structure sequences (SSS)which can be 

obtained fromproteinstructure prediction server PSIPRED 

(Jones, 1999) consist of three secondary structural 

elements: H(helix), E(strand) and C(coil). 

In Kong, and Zhang (2014) for the predicted 

secondarystructural elements of a given protein sequence, 

another two simplified sequences are proposed. One 

sequence is a segment sequence (SS), which is 

composedof helix segments and strand segments (Yang, et. 

al., 2010; Zhang, et. al., 2011; Zhang, et. al., 2013). First, 

every H, E and C segment in SSS is respectively replaced 

by the individual lettersH, E and C. Then, all of the letters 

C are removed and SS is obtained. Theother sequence is 

obtained by removing all of the letters C fromSSS, andthe 

new sequence is denoted by E-H (Ding, et. al., 2012). For 

example, given a secondarystructure sequence  

SSS: 

EECEEECCEECCCCHHHHCCHHHCCCEEECCHHHC 

the corresponding SS and E-H are  

EEEHHEH  

and 

EEEEEEEHHHHHHHEEEHHHE,  

respectively. Based on the above three sequences,several 

structure-driven features are rationally constructed. 

The details of these features are given as follows: 

Content-Related Structure-Driven Features 

1. The contents of secondary structure elements are the 

most widelyusedstructure-driven features, and have been 

proved significantlyhelpful in improving prediction 

accuracy of protein structural class (Kurgan, et. al., 2008a, 

b). They are formulated as: 

�(�) = 
(@)

� , � ∈ BC, D, EF  (7) 

where N(x) is the number of secondary structural element 

H, E or C inSSS; N1 denotes the sequence length of SSS. 

This type of features hasbeen extended to SS (Mizantry, 

and Kurgan, 2009). Here we further reuse them in E-

H.This feature is extended to SS (Yang 2010) and to E-H 

(Kong, and Zhang 2014). 

2. Biosequence patterns usually reflect some important 

functional orstructural elements in biosequences such as 

repeated patterns (Chen, and Liu, 2013). 
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In SSS, the 2-symbol repeated patterns are considered 

here, such asHH, EE, HE and EH. Hence, the contents of 

repeated patterns are proposedas follows: 

�(�G) = 
(@H)

� , �G ∈ BCC, DD,CD, DCF(8) 

where N(xy) is the number of 2-symbol repeated 

patternsHH, EE, HEor EH. These features are extended to 

E-H and SS sequence. (Kong, and Zhang 2014). 

3. The normalized counts of α-helices and β-strands in SSS 

(Ding, et. al., 2012), another 

important structure-driven features, are given below: 

/EIJ<KL�M(�) = EIJ<KL�M//�, � ∈ BC, DF           (9) 

whereCountSeg(x) is the number of H or E segments. 

These featureshave been reused in E-H (Ding, et. al., 

2012). Here we further extended to SS. 

The 25 features shown above characterize the contents of 

the predictedsecondary structure from different aspects. 

They can be categorizedinto content-related structure-

driven features. Below, wewill further extract other types 

of structure-driven features such asorder-related and 

distance-related features. 

Order-related Structure-driven Features 

4. Second order composition moment of H, E and C are 

specially proposedto reflect the spatial arrangement of 

secondary structural elementsin SSS (Liu, and Jia, 2010), 

which are formulated as: 

E%O(�) = ∑ �P
Q(P)
��
�(
���) , � ∈ BC, D, EF            (10) 

wherenxj is the jth order (or position) of the corresponding 

secondarystructural element in SSS. As these features 

reflect the orderrelatedcharacteristic of secondary 

structure, they can be categorizedinto order-related 

structure-driven features. This feature is reused in E-H 

(Ding, et. al., 2012)and in SS sequences(Kong, and Zhang 

2014) 

5. Classification of protein structures is based on the 

contents and spatialarrangements of secondary structural 

elements especially for theα/β and α+β classes. While 

proteins in the α/β and α+β classescontain both α-helices 

and β-strands, they are usually separated inthe α/β class 

but are usually interspersed in the α+β class. 

Thedistribution information of secondary structure 

segments will behelpful to inferring spatial arrangement of 

secondary structural elements. 

As distance information of secondary structural 

elementscan reflect the distributions of α-helices and β-

strands, we proposeseveral distance-related structure-

driven features. The length ofα-helices or β-strands can be 

considered as a type of distance inthe same secondary 

structural segment. Thus normalized maximal,minimal and 

average lengths of secondary structural segments 

andvariance of α-helices (β-strands) lengths are proposed 

as follows: 

/%;�L�M(�) = RS@TUV(@)

� ,		  (11)          

/%-<L�M(�) = R��TUV(@)

� ,		  (12)                     

/WXML�M(�) = �YVTUV(@)

� ,		  (13)           

/O;ZL�M(�) = [S\TUV(@)

� ,		  (14)                     

where x ∈ {H, E}, MaxSeg(x) and MinSeg(x) are the 

lengths of thelongest and shortest α-helices (β-strands) and 

AvgSeg(x) andVarSeg(x) denote the mean and variance of 

lengths of α-helices(β-strands), respectively. Similarly, we 

consider the distance betweenthe same secondary 

structural segment, and the features aredefined as: 

/%;�](�) = RS@^(@)

� ,		  (15)                     

/%-<](�) = R��@^(@)

� ,		  (16)                     

/WXM](�) = �YV^(@)

� ,		   (17)            

/O;Z](�) = [S\^(@)

� ,		   (18)                     

where x ∈ {H, E}, MaxD(x) and MinD(x) are the maximal 

and minimaldistances between adjacent α-helices (β-

strands) and AvgD(x)and VarD(x) denote the mean and 

variance of distances between adjacentα-helices (β-

strands), respectively. In addition, the distancebetween 

different secondary structural segments is further 

considered. 

The normalized maximal, minimal and average, variance 

ofthe distances between adjacent α-helices and β-strands 

are computedby the following formulas: 

 

/%;�](��) = RS@^(@@)

� ,		  (15)                     

/%-<](��) = R��@^(@@)

� ,		  (16)                     

WXM](��) = �YV^(@@)

� ,		   (17)            

/O;Z](��) = [S\^(@@)

� ,		   (18)     

where xx ∈ {HE, EH}; HE denotes segment from α-

helices to the adjacentβ-strands, and EH denotes segment 

from β-strands to theadjacent α-helices. As there are only 

letters H and E in SS and E-H,the similar features of 

NMaxD(xx), NMinD(xx), NAvgD(xx) andNVarD(xx) in 

SS and E-H are always 0. Hence, we only extend another8 

distance-related structure-driven features (Eqs. (5)–(12)) to 

SSand E-H. 

A total of 88 structure-driven features are proposed here. 

Amongthese features, 25 of them belong to content-related 
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features, 7 ofthem belong to order-related features, and 56 

of them are distancerelated. 

In addition, 56 out of 88 features are first proposed in 

Kong, and Zhang (Kong, and Zhang, 2014).  

 

RESULTS 

The prediction method by Kong, and Zhang (Kong, and 

Zhang,2014) is examined by them with four datasets in 

Table 4 

 

Table 4. Comparison of the accuracies between twofeature 

sets by Kong, and Zhang (2014) that include 27 features 

and only 12reused features. 

Data Features Accuracy (%) 

  α β α/β α+β O.all 

25PDB All 94.1 87.1 84.1 74.4 85.0 

Reused 91.4 82.8 82.7 72.8 82.4 

1189 All 93.7 86.1 86.8 73.9 85.2 

Reused 80.2 84.0 81.1 62.7 79.5 

640 All 91.3 77.3 91.5 76.0 83.9 

Reused 87.7 76.0 88.7 73.7 81.4 

PC899 All 96.9 94.8 97.1 78.0 94.5 

Reused 92.3 93.3 96.8 69.5 92.4 

 

The prediction method was examined with 25PDB, and 

30FB datasets by authors of this review.Results on the two 

datasets with these features are as in Table 5. 

 

Table 5 

Accuracies in 25PDB. Only transition matrix is used by 

authors. 

Data Features Accuracy (%) 

  α β α/β α+β O.all 

25PDB Transition 86 83 48 61 68.3 

 

 

5. DISCUSSION 

Kong, and Zhang (2014) introduced a novel 

computationalmethod forpredicting protein structural class 

solely using the predicted secondarystructure information. 

The 27 structure-driven featureswhich are 

rationallydivided into three groups (CR, OR and DR) are 

extracted to reflectgeneral contents and spatial 

arrangements of the predicted secondarystructural 

elements of a given protein sequence. Based on a 

comprehensivecomparison with other existingmethods on 

four widely-used lowhomologybenchmark datasets, the 

proposedmethod is shown to be aneffective computational 

tool for protein structural class prediction. Asfor the 

intrinsically disordered proteins which contain regions 

with nostable structure and may have specific sequence 

characteristics, itwould be more difficult to predict their 

structural class. Therefore,investigations about how the 

proposed method performs on the lowsimilarityaswell as 

disordered protein datasetswill constitute an 

interestingsubject for future work.  

6. CONCLUSION 

In this review article, three novel methods for protein 

structural classprediction arestudied. In Kong, and Zhang 

(Kong, and Zhang, 2014), not only the overall prediction 

accuracybut also the accuracies for proteins from α+βand 

α/β classes arehigher than the other two methods. 

Furthermore, rationaldesign on the basis of protein spatial 

structural information isproved to be a successful approach 

to obtain new features and,consequently, to improve the 

prediction accuracy. 
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