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Abstract: 
Cournot (1838) anticipated Nash's definition of equilibrium by over 
a century, but only in the context of a particular model of duopoly. 
Not surprisingly, Cournot's work is one of the classics of game 
theory; it is also one of the cornerstones of the theory of industrial 
organization. We consider a modification of the Cournot's model 
with an uncertainty in the demand. We find the Bayesian Nash 
equilibrium of the game. 
 
 
 

 
1. INTRODUCTION 
 

Negotiating about the shares is costly, 
and the pie may decay or disappear if 
the negotiations go on for very long. At 
least since Edgeworth (1881) 
bargaining has been perceived as an 
important question in economics and 
political science. Nash (1950, 1953) 
used both the cooperative or axiomatic 
approach and the noncooperative one 
in his work on bargaining; he first 
characterized the unique outcome 
satisfying a set of axioms, and then 
proposed a non-cooperative game 
whose equilibrium was precisely this 
outcome. However, Nash's 
noncooperative model assumed that 
players had only one chance to reach 
an agreement, and that if they failed 
to do so they were unable to continue 
negotiating. This game seemed too 
simple to capture the richness of 

bargaining, and the noncooperative 
approach to bargaining received little 
attention until the 1970s. 
 
 

2. COURNOT DUAPOLY  
MODEL WITH COMPLETE  
INFORMATION 
 
Let 1q  and  2q  denote the quantities 
of a homogeneous product produced by 
firms 1 and 2, respectively. Let P(Q) = 
a - Q be the market-clearing price 
when the aggregate quantity on the 
market is Q = 1q  + 2q .  
 
Assume that the total cost to firm i of 
producing quantity iq  is 

10,)(  ccqqC iii . That is, there 

are no fixed costs, and the marginal 
cost is constant at c. Following 
Cournot, suppose that the firms 
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choose their quantities simult-
aneously. 
 
In order to find the Nash 
equilibrium of the Cournot game, 
we first translate the problem into 
a normal-form game. Recall from the 
previous section that the normal-form 
representation of a game specifies:  
 
(1) the players in the game,  
(2) the strategies available to each 
player, and  
(3) the payoff received by each player 
for each combination of strategies that 
could be chosen by the players.  
 
There are of course two players in any 
duopoly game, the two firms. In the 
Cournot model, the strategies 
available to each firm are the different 
quantities it might produce. We will 
assume that output is continuously 
divisible. Naturally, negative outputs 
are not feasible. Thus, each firm's 
strategy space can be represented as 

 ),0 iS , the nonnegative real 

numbers, in which case a typical 
strategy is is a quantity choice, 0iq . 

One could argue that extremely large 
quantities are not feasible and so 
should not be included in a firm's 
strategy space. Because P(Q) = 0 for 
Q>a, however, neither firm will 
produce a quantity aqi  . 

 
It remains to specify the payoff to firm 
i as a function of the strategies chosen 
by it and by the other firm, and to 
define and solve for equilibrium. We 
assume that the firm's payoff is simply 
its profit. Thus, the payoff  jii ssu ,  in 

a general two-player game in normal 
form can be written here as 
 

   
 cqqaq

cqqPqqqu

jii

jiijii





)(

)(,
. (1) 

 
he strategy pair  *

2
*
1 , ss  is a Nash 

equilibrium if, for each player i  
 
    iijiijii Ssssussu  ,,, *** . 

Equivalently, for each player i , *
is

must solve the optimization problem 
 *, jiiSs ssuMax

ii
. 

In the Cournot duopoly model, the 
analogous statement is that the 
quantity pair  *

2
*
1 , qq  is a Nash 

equilibrium if, for each firm i , *
iq

solves 
   cqqaqqqu jiijii 


)( Max, Max *

q0

*

q0 ii

 Assuming caq j *  (as will be 

shown to be true), the first-order 
condition for firm i ’s optimization 
problem, which is obtained by 
equating the derivative of the payoff 
function 

   

cqqa

qcqqa
dq

qqud

ji

iji
i

jii





)2(

1)(
,

*

*
*

 

To zero is both necessary and 
sufficient; it yields 

 .
2

1 * cqaq ji   

Thus, if the quantity pair  *
2

*
1 , qq  is to 

be a Nash equilibrium, the firms' 
quantity choices must satisfy 

   .
2

1
,

2

1 *
1

*
2

*
2

*
1 cqaqcqaq 

     (2) 
Simultaneous solutions of these two 
linear algebraic equations in  ji qq ,  

leads to 

 caqq 
3

1*
2

*
1     (3) 
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Which are indeed less than ca  , as 
assumed. 
 
If we approach to the problem 
graphically, the two best-response 
functions  
 
    2,1,)(,  icqqaqqqu jiijii  

 
intersect only once, at the equilibrium 
quantity pair   3/1** 21 cqq  . 

 
 
Figure 1. Equilibrium quantity pair 

  3/1** 21 cqq   for c = 0.2. 
 

The value 
2

3

1

3

1
,

3

1






 







  ccc

ui
 of the 

utility function  jii qqu ,  at 

  3/1 cqi   dominates its values at 

any other value of iq , when player j  

plays   3/caq j  .  The same is true 

for the player j . Therefore 

  3/1** cqq ji   is a Nash 

equilibrium. 
 
A three dimensional picture of the 
Nash equilibrium can be given as 
follows: 

 

Figure 2. Playoff surfaces for two 
buyers and the equilibrium point. 
 

3. COURNOT DUAPOLY  
MODEL WITH INCOMPLETE 
INFORMATION 

 
Let us modify Cournout duopoly model 
with complete information into one 
with incomplete information simply 
changing certain matket demand a 
with an uncertain high demand Ha  
with probability  , and a low demand 

La  with probability 1  (Gibbons, 
1992). Furthermore information is 
asymmetric: firm 1 knows whether 
demand is high or low, but firm 2 does 
not. All of this is common knowledge. 
The two firms simultaneously choose 
quantities.  
 
Then the expected utilities of firm 1 
will be 
   
   

    
 .)(

)(1

)(,,

211

221

211

2112211

cqqaq

qqaaq

cqqaq

cqqaqqqqu

LL

LHLH

LL

HHLH












     (4) 
While 

   
   .)(,

)(,

212212

212212

cqqaqqqu

cqqaqqqu

LLLLL

HHHHH




     (5) 
The quantities *

2
*
2 , LH qq  solve 

   LLHH qquqqu 2
*
12

q0
2

*
12

q0
, Max,, Max

2L2H 
 

respectively. The first-order conditions 
for firm 2’s optimization problem are 
obtained by the derivative of the 
payoff functions above: 
 

   

,)2(

1)(
,

*
12

22
*
1

2

2
*
12

cqqa

qcqqa
dq

qqud

HH

HHH
H

HH




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   

.)2(

1)(
,

*
12

22
*
1

2

2
*
12

cqqa

qcqqa
dq

qqud

LL

LLL
L

LL




 

 
Equating these derivatives to zero one 
gets: 

   .
2

1
,

2

1 *
1

*
2

*
1

*
2 cqaqcqaq LLHH 

     (6) 
On the other hand *

1q  solves  
 

 
 

   
    
  .

)(
Max

)(1

)( 
Max

,, Max

*
21

*
2

*
21

q0

*
211

*
211

q0

*
2

*
211

q0

1

1

1
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


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





















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







cqqaq

qqaaq

cqqaq

cqqaq

qqqu

LLi

LHLH

LL

HH

LH






 

The first-order condition for firm 1’s 
optimization problem is: 

      

   .2

1)(
,,

*
21

*
2

*
2

1
*
21

*
2

*
2

1

*
2

*
211

cqqaqqaa

qcqqaqqaa
dq

qqqud

LLLHLH

LLLHLH
LH









Equating this derivative to zero one 
obtains: 

   .
2

1 *
2

*
2

*
2

*
1 cqaqqaaq LLLHLH  

     (7) 
Simultaneous solutions of linear 
algebraic equations (6) and (7) in 
 *

2
*
2

*
1 ,, LH qqq  leads to 
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1
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1

*
1

*
1

caaq

caaaq

ccqaa
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LH

LLH

LL

LHLH
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









 







 (8) 

And 

 

   

    

   
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6

1
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6

1
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6

1
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6

1

*
2

*
2
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ccaaaq
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LHHH














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     (9) 
. 
Hence  *

2
*
2

*
1 ,, LH qqq  is the Nash 

equilibrium of this game with 

  

    

   .213
6

1

,213
6

1
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2
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caaq
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





 

To have nonnegative  *
2

*
2

*
1 ,, LH qqq , 

constraints on  ,,, caa LH  are 

   ./2

,

LHL

L

aaca

ca





 (10) 
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