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Abstract 
Researchers are confident about the validity of the basic hypothesis that 
the secondary and tertiary structures of a protein are uniquely determined 
by its sequence o f  a m i n o  a c i d s , that is its primary structure. In 
this article we use a database of 200 proteins. To find the secondary 
structure of a new protein, the first thirteen residues of this protein are 
taken as a substring. Then the conformations of the central amino 
acids of thirteen residue substrings of the proteins in the database, 
whose hamming distances are less than a given threshold or alignment 
scores exceed a given limit are collected in a basin. The commonest 
conformation in this basin is attached as the conformation of the 
central amino acid of the substring of the unknown protein. Using this 
technique, for MHsim threshold 3.0, a correct estimation rate of 
53.4% is obtained with 4.74% indecisives and for MHsim threshold  
5.0, the success was 56.93% with76.59% indecisives. When the half 
of the proteins, whose secondary structure estimations are higher, 
subjected to same calculation the following results are obtained; for 
MHsim threshold 3.0, correct estimation rate is 79.52% with 58.87% 
indecisives and for MHsim threshold 5.0, correct estimation rate is 
65.52% with 5.02% indecisives. Average correct estimation rate for 
the alignment scores was %54. 
 
    

 

 

 

1. INTRODUCTION  

For more than four decades, the protein folding problem 
has been among the most challenging problems in the 
biological sciences. In 1994, a protein structure prediction 
contest was organized with the aim of assessing the real 
virtues and defects of several well known methodologies. 
Analysis of the structures predicted by the contestants 
(Moult et al., 1995) has generally shown that even the 
most promising techniques need considerable  

 
 
 
 
improvement, and that the protein folding problem should 
still be considered unresolved. Briefly, preliminary 
calculations, although promising, are feasible only for 
small-size proteins; there have been no major 
breakthroughs in the molecular modeling techniques and 
threading techniques need further development. 
During this contest, protein secondary structure prediction 
was reevaluated and recognized as a useful tool for 
establishing starting points for tertiary structure calculation 
determination of protein structures. Early approaches to 
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protein secondary structure prediction from the primary 
sequence had prediction accuracy, which is the percentage 
of correctly predicted residues in the three states: α-helix, 
β-strand, and coil, of about 57% (Chou & Fasman, 1978; 
Garnier et al., 1978). Various later attempts to improve the 
accuracy (Gibrat et al., 1987; Biou et al., 1988; Levin & 
Garnier, 1988; Holley & Karplus, 1989; Qian & 
Sejnowski, 1989; King & Sternberg, 1990; Salzberg & 
Cost, 1992; Stolorz et al., 1992; Zhang et al., 1992; 
Munson et al., 1994) with innovative artificial intelligence 
techniques, such as neural networks, machine learning, 
nearest neighbors, and combined approaches, have not 
achieved prediction accuracies greater than 66%. The 
inclusion of evolutionarily related sequences into the 
prediction scheme has given a significant boost in 
prediction accuracy, up to values of about 68-72% 
(Zvelebil et al., 1987; Levin et al., 1993; Rost & Sander, 
1993, 1994; Rost et al., 1994a; Di Francesco et al., 1995; 
Salamov & Solovyev, 1995). In general, the suggested 
explanation for these improvements in prediction accuracy 
is that sequence alignments of homologous proteins should 
emulate as closely as possible the structural alignment. 
Thus, aligned residues, in particular those in the core 
proteins, should belong to the same secondary structure 
elements. Sequence alignments may be utilized to obtain a 
consensus from the predictions based on each homologous 
sequence, or they may be used to build sequence profiles 
at each aligned position. In addition to the identity of the 
aligned residues, which is a feature exploited by all the 
predictive schemes, other information is available from 
sequence alignments, such as the location of gaps or the 
patterns of residue mutation in the aligned protein families. 
Some authors have used such information to refine their 
prediction models (Zvelebil et al., 1987; Rost & Sander, 
1993; Rost et al., 1994a; Salamov &Solovyev, 1995). 
However, the reasons why the inclusion of this additional 
information improves the quality of the prediction have not 
been understood.  

In his extensive review Rost (Rost, 2001) asks the 
following question: 88% is a limit, but shall we ever reach 
close to there? 

A database of 200 random proteins with known secondary 
structure formations is prepared. To find the secondary 
structure of a protein, test substrings of consecutive 
residues of length 13 of this protein are formed. Then in 
proteins in the database, substrings of length 13 with high 
enough similarities to the test string are collected in a pool. 
The most common secondary structure formation 
corresponding to the central amino acid of substrings in 
the pool is attached to the central amino acid of the test 
substring as secondary structure formation.  
 
2. FORMULATION OF THE PROBLEM 

To estimate the conformation of the protein at a given 
residue, we consider 6 right and 6 left neighbors of this 
residue. Our hypothesis is that the conformation at the 
central residue is determined by these neighbors and by 
itself. 

Primary structure:      DETTAL𝐕CDNGSG 
Secondary structure:   CCCCCC𝐒SSSSSS 
Figure 1 Primary and secondary structures of a protein of 
length 13 residues. 

 (a) Database  
Primary structures of 200 proteins are obtained from the 
PDB website. Secondary structures of these proteins are 
obtained in the form of the xray analyses in three 
conformations helix "h", sheet "s" , and others ".". Others 
are interpreted as coils "c". 

 
Figure 2α-helices, β-sheets, and coils on the same picture 
(PDB code for the protein: 1OC0). 

(b) Symbols for Amino Acids  
Proteins are chains in the three dimensional space built 
from smaller chemical molecules called amino acids. 
There are 20 different amino acids. Each of them is 
denoted by a different letter in the Latin alphabet as shown 
below. 

#  Amino acid  Chemical  alphabet 
1 Alanine  Ala  A  
2 Arginine  Arg  R 
3 Asparagine  Asn  N 
4 Aspartic acid  Asp  D 
5 Cysteine  Cys C 
6 Glutamine  Gln  Q 
7 Glutamic acid  Glu  E 
8 Glycine  Gly  G 
9 Histidine  His  H 
10 Isoleucine  Ile I 
11 Leucine  Leu  L 
12 Lysine  Lys  K 
13 Methionine  Met  M 
14 Phenylalanine  Phe  F 
15 Proline  Pro  P 
16 Serine  Ser  S 
17 Threonine  Thr  T 
18 Tryptophan  Trp  W 
19 Tyrosine  Tyr Y 
20 Valine  Val V 

Table 1 Names and symbols of 20 amino acids 
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Based on the protein chain it is easy to create its relevant 
sequence of amino acids replacing an amino acid in chain 
by its code in Latin alphabet. As a result a word on the 
amino acids’ alphabet is received. This word can be called 
a protein primary structure on the condition that letters in 
this word are in the same order as amino acids in the 
protein chain are. 

A secondary structure of a protein is a subsequence of 
amino acids coming from the relevant protein. These sub 
chains form in the three dimensional space regular 
structures which are the same in shape for different 
proteins. In the analysis, a similar representation for the 
secondary structures as for the primary ones has been used. 
A secondary structure is represented by a word on the 
relevant alphabet of secondary structures – each kind of a 
secondary structure has its own unique letter α-helix, H; β-
sheet S, and coil C. An alphabet of secondary structures 
consisting of three different secondary structures has been 
considered in the analysis. 

(c) Coding the Data  
In this paper, data corresponding to an amino acid consists 
of 6 right, and 6 left neighboring amino acids of this amino 
acid in the primary chain of the protein as in Table 2. In 
the second row, secondary structure conformations of 
these neighboring amino acids are given.  

A E E K E A V L G L W G K 
H H H H H E E E E C C C E 

 

Table 2 Six right, and six left neighboring amino acids of the 
central amino acid V. 

Secondary structure letters H, E, and C are coded as in the 
table below; 

H E C 
1 0 0 
0 1 0 
0 0 1 

Table 3 Codes for secondary structure letters H, E, and C. 

(d) Similarity Measures  
To find the secondary structure of a protein, test substrings 
of consecutive residues of length 13 of this protein are cut. 
Then in proteins in the database, substrings of consecutive 
residues of length 13 are cut as well. To infer the 
conformation of the central amino acid of test substring, 
we search for similar substrings of the same length of 13 
from the proteins in the database. For this purpose, two 
similarity measures are used. 
 
(1) Modified Hamming Similarity  
Hamming distance of two substrings of the same length is 
the number of the mismatches as seen in Table 4.  
 
 

G R L P A C V V D C G T A 
M L S P A D K V N V K A A 
0 0 0 1 1 0 0 1 0 0 0 0 1 

Table 4 Hamming distance of two substrings of the same 
length is the number of the mismatches 

Now a similarity measure of the given two strings can be 
defined as  
                                𝐻𝑠𝑖𝑚 = 13 − 𝐻𝑑𝑖𝑠.  (1) 
 
There is a consensus about the affect of amino acid 
composition of the primary sequence on the secondary 
structure of a protein. But clearly this affect is local. That 
is amino acids far away of the central amino acid have less 
affect on the conformation at the central amino acid, 
compared to the nearer ones. It means that the match “VV” 
at the 8th position is more important than the match “AA” 
at 13th position. 

To weight matches we propose a Gaussian curve 
 
  𝐹(𝑥) = 𝑒−(𝑥−7)2/𝑠2 ,  (2) 
 
where s is a measure for the spread of the curve. 
 
 

 
 
Figure 3 Weighted matches for s=5. 

For the substrings in Table 4, hamming similarity is 
𝐻𝑠𝑖𝑚 = 4, modified similarity is 𝑀𝐻𝑠𝑖𝑚 = 2.75. 
 
(2) Alignment Score  
The alignment of two strings 

GRLPACVVDCGTG 
MLSPADKTNVKAA    (3) 

is obtained as   
 
G – R L – P A C V V D – C G T – G 

– M – L S P A – – – D K – – T N – 
      
– – – – 
V K A A 
                          (4) 
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“–“in the first reference  string is called a deletion, while a 
“–“ in the second query string is called an insertion. Same 
amino acids in a column are called “matches”, different 
amino acids in a column are called “mismatches”. If we 
reward matches by 𝑚𝑠 = 1, penalize mismatches by 
𝑚𝑚 = 0, deletions 𝑑 = −0.5, insertions by 𝑖 = −.25, the 
alignment score of the above alignment is 
𝑆𝑐𝑜𝑟𝑒 = 4 ∗ 1 + 9 ∗ 0 + 8 ∗ (−0.5) +  8 ∗ (−0.25) = −2 
      (5) 

 
3. IMPLEMENTATION 

To obtain secondary structure at an amino acid in a 
protein, taking six right, and six left neighbors of this 
amino acid, we compose an ordered 13 tuple of amino 
acids as a test string. Then from protein database at hand 
we take proteins whose secondary structures already 
known, in an orderly way, and choose a substring of 
consecutive amino acids of length 13 as a target string. 
Then we compute similarities of this pair of test-target 
substrings according to one of the similarity measures 
given in the above. If similarity is higher than the 
prescribed threshold, we put the conformation of the 
central amino acid of the target string in a basket. We 
repeat this procedure for all 13tuples of consecutive amino 
acids, of the proteins in the database. Eventually the 
commonest of conformations in the basket is attached as 
the conformation of the central amino acid in the test 
string. 
 

Database of Proteins 

200 proteins of known structures, with a total 169 026 
amino acid residues collected from PDB almost randomly. 
To test the accuracy of the method each time one of the 
proteins is chosen as the testing protein, and other 199 
proteins are taken as target proteins. 
 
4.  RESULTS AND DISCUSSION 

In a biological context, the term homology, defines 
similarity of structure, physiology based upon a genetic 
factor. The protein homology most recognized by 
similarities in their amino acid sequence. There is a widely 
accepted hypothesis that: “the greater the sequence 
similarity; the more closely related are the scaffold 
structure”. Based on this approach, proteins primary 
sequence similarity was investigated with searching for 
similar substrings of the same length of 13 from the 
proteins in the database. Each of the similar 13 tuples in 
the database is found and collected into the basket with 
modified hamming similarity threshold 5 and 3 separately. 
The proteins that have high similarity and high accuracy 
with some certain proteins in database has been detected 
and separated for further analysis. Further analyzes is 
going to cover some fundamental questions such as; what 
is the structure of the similar regions in highly similar 
proteins? In what bases correct structural classification of 
proteins can be performed? We believe that answering 

these questions will enable us to classify proteins, existed 
protein classification approaches are going to be analyzed 
and methodology is going to be strengthening. The 
following question; “what is the advantage of the structural 
classification of proteins over randomly chosen proteins” 
will be addressed. In the other hand proteins that have no 
similar or low similar sequences in the database also 
detected. This protein`s structure, physiological characters 
and their physicochemical properties are going to be 
analyzed in order to reveal information about the influence 
of this parameter. The essence of particular parameter 
aimed to be found which make this protein structure 
unique. We believe that it will provide us a new attribute 
in order to increase the prediction capacity of our 
algorithms.   

For each test substring of length 13, around 16000 
comparisons are made with 13tuples of amino acid 
residues of target proteins. In an average desktop computer 
this operation is performed in around five seconds. 
Therefore it is not feasible to increase the number proteins 
in the database. For this reason, for high thresholds for the 
similarity, some of the test 13tuples may not have similar 
enough 13tuples in target proteins. In such a case, the 
conformation of the central amino acid of the test 13tuple 
remains undefined. On the other hand, high similarity 
brings high accuracy in the secondary structure estimation. 
In Table 4, for certain values of the modified hamming 
similarity threshold, the percentage of the indecisive 
residues, and accuracy in the three conformations α-
helices, β-sheets, and c-coils are given.   

 

MHsim Indecisives  % Accuracy  % 
≥ 5.0 76.59 56.93 
≥ 4.5 54.15 54.15 
≥ 3.0 4.74 53.41 

Table 5 Similarity thresholds vs.  accuracy in MHsim 

For the half of the proteins in database whose correct 
secondary structure estimations are better, the correct 
estimation rates are as in Table 6. 

 

MHsim Indecisives  % Accuracy  % 
≥ 5.0 58.87 79.52 
≥ 4.5 40.74 67.06 
≥ 3.0 5.02 65.56 

Table 6 Similarity thresholds vs.  accuracy in MHsim for 
better half. 

For the similarity measure computed by the use of the 
alignment score, the built in function Needleman Wunsch 
Similarity in MATHEMATICA is used. As scoring matrix, 
PAM70 is chosen. Test and target substrings are of length 
17 to give more stable and reliable alignment scores. 

In Table 7, for the values 1, and −5 of the alignment score 
thresholds, the percentages of the indecisive residues, and 
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average accuracies in the three conformations α-helices, β-
sheets, and c-coils are given.   

A. Score Indecisives % Accuracy  % 
≥  1 69.69 63.65 
≥ −5 6.31 54.01 

Table 7 Alignment score thresholds vs.  accuracy in ASsim 

For the half of the proteins in database whose correct 
secondary structure estimations are better, the correct 
estimation rates are as in Table 8. 

A. Score Indecisives  % Accuracy  % 
≥ 1. 51.78 93.24 
≥ -5 7.31 62.16 

Table 8 Alignment score thresholds vs.  accuracy in ASsim 
for better half. 

These results show that the analysis which relies on a 
database of 200 proteins has a estimation power that is 
comparable with the famous online estimation tools. Table 
6, and Table 8 display the correct estimation rates of the 
half of the proteins in database whose correct secondary 
structure estimations are better. 
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