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1. INTRODUCTION 
A COP in n dimensional space can be defined by two 
components: an objective function to be maximized or 
minimized, and several inequality and equality constraints. 
The general structure is defined as: 

min or max 𝑓(𝑥),   

𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 ∈ 𝐹 ⊆ 𝑆 ⊆ ℝ𝑛 
(1)  

 

subject to 

𝑔𝑖(𝑥) ≤ 0,   𝑖 = 1, … , 𝑟 
(2)  

 ℎ𝑖(𝑥) = 0,   𝑖 = 𝑟 + 1, … ,𝑚, (3)  

where 𝑆 = ��⃗� ∈ ℝ𝑛�𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗��, 𝑗 = 1, … ,𝑛 and 𝐹 =
{�⃗� ∈ 𝑆|𝑔𝑖(�⃗�) ≤ 0 𝑎𝑛𝑑 ℎ𝑖(�⃗�) = 0�}, �⃗� is solution vector 
�⃗� = [𝑥1, … , 𝑥𝑛]𝑇, r is the number of inequality and m-r is the 
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number of equality constraints. Some researchers convert 
equality constraints into inequalities by adding a small  
 
 
tolerance 𝜖 > 0. 

There have been innumerable benchmark problems 
introduced in the field of nonlinear constrained optimization by 
the researchers. In the vast realm of nonlinear programming 
with nature-inspired algorithms (NIAs), collecting all 
constrained optimization problems (COPs) is a cumbersome 
task to be realized. Keeping this fact in mind, this work 
attempts to bring together the most common COPs while 
testing the performance of NIAs by the practitioners. 
Moreover, the composition of test suites should allow 
evaluating the performance of the algorithm under various 
conditions.  

Second aim of this work is to address the performance 
measures used in the domain and contrast their informative 
characteristics. While conducting comparative analysis of 
results obtained with NIAs, selection of the proper 
performance indicators are of paramount importance.  

The rest of this work is organized as follows: The essential 
guidelines when selecting a representative benchmark set and 
the general properties of most common COPs benchmarks are 
given in Section II. Section III is devoted to setting up proper 
performance measures to verify the merit of a proposed NIA in 
constrained optimization domain. Lastly, the findings are 
summarized in Section IV.  

BENCHMARK PROBLEMS 

2.1. Selection Guidelines 
The benchmark problems in the domain may be grouped 

into two main classes based on the resource that they originated 
from (El-Ghazali, 2009): 

1. Artificial Problems: From the early stages of the 
intelligent problem solving with NIAs, different researchers 
from various backgrounds have introduced countless many 
COPs. Gradually, their individual contributions have been 
collected to form benchmark problem sets. In general, the 
primary goal of such benchmark sets is to cover as many 
problems variants as possible in order to provide a reliable test 
basis. On the other hand, the advantage of such collections is 
that they are evaluated by various methods and the results 
obtained by these methods are easily accessible (Eiben and 
Smith, 2008). 

Another main source of benchmark problems is the 
problem generators that have been developed by the 
researchers. Two most referred examples of such generators 
can be found in (Spears, 2004) and (Gallagher and Yuan, 
2006). Their main drawback is that the problems generated by 
a certain generator are of the same or similar type since the test 
problem generators usually rely on certain problem 
construction principles. Thus, they may not yield to reliable 
results for test algorithms claiming to be robust (Yu and Gen, 
2010).  

2.  Real life problems: This type of problems originates 
from a real life challenge. They form especially valuable 

benchmarks while testing the applicability of the algorithm in 
various field of science. On the other hand, the data of a real 
life problem is usually unavailable to the whole research 
community due to the potential copyrights and confidentiality 
consequences. Thus, repeating the numerical experiments on 
the data is mostly not a feasible option. This, in turn, makes the 
comparison of different algorithms on the same problem barely 
possible (Yu and Gen, 2010). Furthermore, the generalization 
of the obtained results is highly difficult since such problems 
usually involve some domain specific aspects.  

After introduction of the two main sources of benchmark 
problems, we would like to specify the main characteristics that 
a good benchmark should possess. Namely, a NIA must be 
evaluated on various test problems covering different variants 
of COPs to investigate its convergence behavior. In other 
words, the set of instances must be diverse in terms of their 
difficulties and structure (El-Ghazali, 2009). Especially, COPs 
with challenging properties, including multimodality, 
sparseness of feasible space, non-separability should be 
included in the test bed to evaluate the robustness of an 
algorithm. However, we should keep in mind that robustness is 
only one of the criterions while proving the merit of an 
algorithm. Alternatively, a performance evaluation study may 
reveal the conditions under which the algorithm can be 
successfully applied.  

Throughout the extensive course of research in the domain, 
some general guidelines for generating test beds for NIAs have 
been generated by Eiben and Smith (2008) from various 
resources: 

• A few unimodal instances should be provided to test 
the convergence speed of the algorithm. 

• Several multimodal functions with a large number of 
local optima must be included in the test suite to examine the 
behavior of the algorithm when dealing with many local 
optima. Additionally, this type of functions may be good 
touchstones to evaluate the robustness of the algorithm. 
Namely, an algorithm reaching the solutions of the same 
quality among many local optima in each distinct run proves its 
robustness. 

• As an additional robustness measure, the algorithm 
should be tested on problems with random noise.  

• The test suite must contain some scalable problems in 
terms of problem variables and search range. By testing the 
algorithm on scalable problems, we may check the possible 
performance deficiencies due to the enlargement of the search 
region. 

• The convergence performance of the algorithm should 
be tested also on non-separable objective functions. 

In addition to the points stated by them for a general 
purpose NIA, we extracted some standards for nonlinear 
constrained optimization test suites. We propose the following 
guidelines specifically apply for constrained optimization 
problems:  

• The algorithm should provide a proper way of 
handling not only inequality constraints but also equality type 
ones. Thus, COPs with high number of equality constraints 
must be present in the test set. Especially, highly nonlinear 
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equality constraints may be challenging for a constrained 
handling method. 

• Some COPs with sparse feasible domain should be 
included in the benchmark set. This allows testing the 
explorative power of the algorithm under such scenario. 

• COPs with global optimum lying on the constrained 
boundary are challenging benchmarks for most NIAs and they 
should comprise an essential part of the test suite.  

• Some NIAs may exploit the above mention property 
of a COP. Thus, the opposite case, global optimum not on the 
boundary, must be analyzed. 

• Some constrained handling mechanism may easily 
distract the search process in COPs with small number of 
constraints and simple structures although they behave well in 
highly constrained environments. The distraction is usually 
paid as unnecessary computational cost in such COPs. Thus, 
some COPs of low complexity may be added to observe this 
effect.  

Obviously, there is still space for more work in this 
direction. More proper test suites may be composed to test the 
above-mentioned issues. The next section states the most 
common test suites used to test NIAs and summarizes the 
general properties of the COPs included in these test suites. 

2.2. Benchmark Problems 

CEC2006 Benchmark 
The CEC2006 test suite is composed of 24 problems that 

have been proposed by various researchers (Liang et al., 2006). 
Since the problems are collected from different resources, the 
problem set may be considered as a unique case covering a 
wide range of problem classes with novel properties.  

The 24 problems brought together by Liang et al. (2006) 
and were subject to a competition organized by IEEE 
community in 2006. The general properties of the benchmark 
problems are given in Table 1 (Liang et al., 2006) where n 
indicates the number of variables, and ρ is the ratio of feasible 
individuals over 1,000,000 random individuals generated with 
uniform distribution within the definition domain of the 
problem. LI, NI, LE, and NE stand for the numbers of linear 
inequalities, nonlinear inequalities, linear equalities, and 
nonlinear inequalities, respectively. Here, act shows the 
number of active constraints at the optimum point, �⃗�∗.  

Mezura-Montes et al. (2010) classifies the CEC2006 
problems based on two criterions; number of decision 
variables, and type of constraints, given in Table 2, and Table 
3.  

CEC2010 Benchmark 
The second test suite worth mentioning is generated by 

Mallipeddi and Suganthan (2010c), see Table 4. Their intention 
was to offer an alternative benchmark set to the well-known 24 
problems, which have been extensively studied and solved by 
many algorithms. Thus, it has become almost impossible to 
demonstrate the superiority of newly designed constrained 
handling methods. Another motivation was to construct a test 
suite with scalable problems in terms of decision variables 
(Mallipeddi and Suganthan, 2010).  

Additionally, in this test suite, the objective functions and 
constraints are rotated by a certain rotation matrix M. The 
rotation operation is justified by the fact that a COP with 
multiple sparse feasible regions parallel to the coordinate axes 
can be solved better by algorithms employing line search or 
difference of two or more solution vectors. Namely, the 
rotation aims fostering a fair environment of comparison 
(Mallipeddi and Suganthan, 2010).  

TABLE 1: GENERAL PROPERTIES OF CEC2006 BENCHMARK PROBLEMS 

Prob.  n  Type of 
function  

ρ LI  NI  LE  NE  act  

g01  13 quadratic  0.0111% 9 0 0 0 6 

g02  20 nonlinear  99.9971% 0 2 0 0 1 

g03  10 polynomial  0.0000% 0 0 0 1 1 

g04  5 quadratic  52.1230% 0 6 0 0 2 

g05  4 cubic  0.0000% 2 0 0 3 3 

g06  2 cubic  0.0066% 0 2 0 0 2 

g07  10 quadratic  0.0003% 3 5 0 0 6 

g08  2 nonlinear  0.8560% 0 2 0 0 0 

g09  7 polynomial  0.5121% 0 4 0 0 2 

g10  8 linear  0.0010% 3 3 0 0 6 

g11  2 quadratic  0.0000% 0 0 0 1 1 

g12  3 quadratic  4.7713% 0 1 0 0 0 

g13  5 nonlinear  0.0000% 0 0 0 3 3 

g14  10 nonlinear  0.0000% 0 0 3 0 3 

g15  3 quadratic  0.0000% 0 0 1 1 2 

g16  5 nonlinear  0.0204% 4 34 0 0 4 

g17  6 nonlinear  0.0000% 0 0 0 4 4 

g18  9 quadratic  0.0000% 0 13 0 0 6 

g19  15 nonlinear  33.4761% 0 5 0 0 0 

g20  24 linear  0.0000% 0 6 2 12 16 

g21  7 linear  0.0000% 0 1 0 5 6 

g22  22 linear  0.0000% 0 1 8 11 19 

g23  9 linear  0.0000% 0 2 3 1 6 

g24  2 linear  79.6556% 0 2 0 0 2 

Since all problems in the test set are scalable, a 
classification based on the number of problem variables is not 
reasonable. The competition organized by IEE (CEC 2010 
Competition of Constrained Real-Parameter Optimization) 
required the participating researchers to solve the problems for 
𝑛 = 10, and 𝑛 = 30. The classification of the problems based 
on the type of the constraints is shown in Table 5. 

TABLE 2:CLASSIFICATION OF CEC2006 PROBLEMS BASED ON THE NUMBER OF 
DECISION VARIABLES (MEZURA-MONTES, MIRANDA-VARELA AND DEL 

CARMEN GÓMEZ-RAMÓN, 2010)  

Class n Problem 
High 10-20 g01, g02, g03, g07, g14, g19, g20, g22 
Medium 5-9 g04, g09, g10, g13, g16, g17, g18, g21, 

g23 
Low 2-4 g05, g06, g08, g11, g12, g15, g24 
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TABLE 3: CLASSIFICATION OF CEC2006 PROBLEMS BASED ON THE 
CONSTRAINT TYPES (MEZURA-MONTES, MIRANDA-VARELA AND DEL 

CARMEN GÓMEZ-RAMÓN, 2010) 

Class Problem 
Only inequalities g01, g02, g04, g06, g07, g08, g09, g10,  

g12, g16, g18, g19, g24 
Only equalities g03, g11, g13, g14, g15, g17 
Inequalities and equalities g05, g20, g21, g22, g23 

TABLE 4: GENERAL PROPERTIES OF CEC2010 BENCHMARK PROBLEMS FOR 
N=10; SEP.: SEPARABLE, NON SEP.: NON SEPARABLE, ROT.: ROTATED 

(MALLIPEDDI AND SUGANTHAN, 2010) 

Problem/Search 
Range 

Type of 
function 

Sep.?  
(0/1) 

Eq. Ineq.  𝝆%  

C01 [0,10]n  nonlinear 0  0 2 Non 
Sep.  

99.76 

C02 [-5.12,5.12] n  linear 1  1 Sep.  2 Sep.  0 

C03 [-1000,1000] n  polynomial 0  1 Non Sep.  0 0 

C04 [-50,50] n  linear 1  2 Non 
Sep., 2 

Sep.  

0 0 

C05 [-600,600] n  linear 1  2 Sep.  0 0 

C06 [-600,600] n  linear 0  2 Rot.  0 0 

C07 [-140,140] n  polynomial 0  0 1 Sep.  50.51 

C08 [-140,140] n  polynomial 0  0 1 Rot.  37.95 

C09 [-500500] n  polynomial 0  1 Sep.  0 0 

C10 [-500,500] n  polynomial 0  1 Rot.  0 0 

C11 [-100,100] n  nonlinear Rot.  1 Non Sep.  0 0 

C12 [-1000,1000] n  nonlinear 1  1 Non Sep.  1 Sep.  0 

C13 [-500,500] n  nonlinear 1 0 2 Sep., 
1 Non 
Sep.  

0 

C14 [-1000,1000] n  polynomial 0  0 3 Sep.  0.31 

C15 [-1000,1000] n  polynomial 0  0 3 Rot.  0.32 

C16 [-10,10] n  nonlinear 0  2 Sep.  1 Sep., 
1 Non 
Sep.  

0 

C17 [-10,10] n  quadratic 0  1 Sep.  2 Non 
Sep.  

0 

C18 [-50,50] n  quadratic 0  1 Sep.  1 Sep.  0.001 

TABLE 5: CLASSIFICATION OF CEC 2010 PROBLEMS BASED ON THE 
CONSTRAINT TYPES  

Class Problem 
Only inequalities C01, C07, C08, C13, C14, C15 
Only equalities C03, C04, C05, C06, C12 

Inequalities and equalities C02, C09, C10, C11, C16, C17, C18 

Engineering Design Problems 
The third group of problems introduced here is the 

engineering design problems collected from various resources. 
Here, we note that the number of problems possibly put in this 
set is more than we included in this work (Yiqing, Xigang and 
Yongjian, 2007; Lin, Hwang and Wang, 2004; Costa and 
Oliveira, 2001). However, we have selected the most common 
problems. The first problem is pressure vessel design problem 
(g40) stated in (Zahara and Kao, 2009). The problem g41 is 
named in the literature as welded beam design problem. It is 
firstly formulated in (Kannan and Kramer, 1994) while it attain 
its standard form in later works. Tension/compression spring 

(g42) and speed reducer (g43) problems are also the two most 
cited design problems in the literature (Liu, Cai and Wang, 
2010) whereas the car side impact design (g44) and stepped 
cantilever beam (g45) problems are not frequently used for test 
purposes (Gandomi, Yang and Alavi, 2011).  

Their current formulations we referred are the most 
common ones stated in the conventional research papers. 
Namely, there are slight differences in the problem statements 
in various sources. In general, the engineering design problems 
have been modified and standardized since their first 
appearance in the NIA domain. Thus, the collection process 
was not a straightforward task. The general properties of the 
selected problems are summarized in Table 6. 

TABLE 6: GENERAL PROPERTIES OF SELECTED ENGINEERING DESIGN 
PROBLEMS  

Prob. n Type of 
function 

ρ LI NI act 

g40  4 polynomial  41.50% 3 1 2 

g41  4 polynomial 2.64% 2 5 1 

g42  3 polynomial  0.75% 1 3 2 

g43  7 nonlinear  0.21% 2 9 4 

g44  11 linear  3.56% 0 10 1 

g45  10 nonlinear 0.43% 5 6 5 

PERFORMANCE MEASURES 
Performance evaluation plays an essential role while 

proving the merit of a heuristic algorithm. Namely, we need 
objective criterions relying on a sound basis to confirm the 
effectiveness of the proposed method. Hence, it is highly 
important to define the performance measures in a systematical 
manner. This is a necessary step not only when comparing two 
different algorithms but also when tuning the control 
parameters of the algorithm during the design stage.  

The employed performance measures may be directly 
obtained from the solutions found by the algorithm or extracted 
indirectly based on the statistical comparison methods. 
Needless to say, the performance evaluations should be 
conducted based on the experiments over several independent 
runs due to the stochastic nature of the NIAs. In general, the 
success of an algorithm is measured based on three basic 
metrics or some indirect values derived from these (Eiben and 
Smith, 2008):  

• Solution quality (effectiveness) 
• Speed (efficiency) 
• Success rate (robustness) 

The first performance measure considers the objective 
function value achieved within a limited computational time as 
the main indicator of the success of an algorithm whereas the 
second metric aims to measure the success based on the 
computational cost needed to achieve a predefined solution. 
Namely, the former specifies the computational time and assess 
the obtained objective function value while the latter one does 
the reverse.  

In general, the solution quality is defined as the mean best 
objective function value (MBOV) over a certain number of 
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independent runs. MBOV is calculated by identifying the best 
objective function value achieved in each run and taking the 
average of these values (Eiben and Smith, 2008). The best-
ever- or the worst-ever-objective function value may be also of 
great interest for some test cases  

A complementary strategy is to identify a satisfactory 
candidate solution and to measure the computational effort 
needed to reach that fitness level. A frequently used metric of 
computational effort is the number of fitness function 
evaluations (FES) required to find that solution.  

Although FES is the most common metric, the direct 
indicator of computational effort is the CPU time which is 
defined by El-Ghazali (2009) as the time a processor spends in 
the execution of the algorithm. However, CPU time may 
change depending on the specifications of the machine, on 
which the algorithm is run, operating system, the programming 
language, and software architecture. Namely, a comparison 
based on CPU times necessitates the recreation of the 
algorithms under consideration. Because recreating an 
algorithm based on the details given in a scientific paper is, in 
general, very cumbersome, the most common practice in the 
literature we referred is to report more generic indicators, 
including the number of function evaluations (FES), the best 
value obtained so far, percentage of successful runs, and 
standard deviation, which are indifferent to machine settings.  

While employing FES as a performance metric, it is 
assumed that an essential proportion of the CPU time is used 
by the evaluation process of fitness function. This assumption 
holds for most of the real-world optimization problems with 
computation-intensive objective functions (El-Ghazali, 2009). 
In this regard, the ratio of the total CPU time needed to execute 
an algorithm for certain number of iterations, 𝑇2, over the time 
spent for fitness function evaluations, 𝑇1, can be calculated, 
which may indicate the complexity of the algorithm, 𝐴𝑐𝑜𝑚𝑝 
(Mallipeddi and Suganthan, 2010):  

 
𝐴𝑐𝑜𝑚𝑝 = (𝑇2 − 𝑇1)/𝑇1. (4)  

To test whether FES is a proper metric in CEC2010 for 
computational effort, we have extracted the algorithm 
complexity values, 𝐴𝑐𝑜𝑚𝑝, reported in each paper for 10 
dimensional problem set participated in the competition. 
Surprisingly, the values range from 6.59% to 853%. Namely, 
the computational overhead induced by an algorithm may vary 
in a broad interval. Hence, FES may not be good indicator of 
the speed for some algorithms with very complex structures. 

Additional to the criticism above, Eiben and Smith (2008) 
state that employing FES may be misleading if a NIA uses 
“hidden labor”, for instance, a time consuming local search 
heuristics embedded into the algorithm (Pelley, Innocente and 
Sienz, 2011; Sun and Garibaldi, 2010). In such cases, extra 
computational costs or additional function evaluations required 
by the local search procedure remain usually neglected.  

The third criterion evaluates the robustness of the algorithm 
in terms of number of runs in which a predefined objective 
function value within the specified computation time has been 
achieved. The success rate (SR) is defined as the ratio of 
successful runs over total number of runs. The total number of 

runs should be specified such that the obtained results allow 
drawing statistical conclusions. 

To sum up, a proper performance evaluation method should 
consider all these three aspects together. Also, we should keep 
in mind that different performance measures may yield 
different conclusions (Garcia et al., 2008; Smith, 2007). 

Additionally, some graphical tools may be relatively useful 
to visualize the performance differences between various 
methods. Convergence graphs and box plots are very common 
means of visualization. The convergence graphs demonstrate 
the convergence behavior of the algorithm to a given objective 
value over the number of fitness function evaluations or the 
generations. They are usually represented in logarithmic scale. 
The box plots are used to show the solution quality and 
reliability of the algorithm over a specified number of 
independent runs. Obviously, the algorithm with higher mean 
fitness value and lower deviation is desired.  

3.1. Performance Measures for COPs 
This section is devoted to the performance measures 

specifically designed for COPs. In addition to the objective 
function value, we may define two additional solution quality 
measures related to the feasibility status of the solution: (i) the 
sum of constraint violation, and (ii) the number of constraints 
violated. In some cases, a feasible solution, though not be the 
optimal one, may be of paramount importance. Thus, finding 
feasible points quickly in a highly constrained search region is 
also a desired property. 

Mezura-Montes et al. (2010) have utilized four metrics to 
measure the performance of NIAs for constrained optimization. 
At this point, we note that the performance measures given 
below rely on the assumption that a target solution can be 
identified while it is either the known global optimum or a 
satisfactory candidate solution. We denote this target solution 
with 𝑓(�⃗�∗). 

Feasibility Rate (FR): With reference to the above 
discussion, they define feasibility rate (FR) metric showing the 
percentage of runs where feasible solutions are found. A 
feasible run is an independent trial at least with one feasible 
solution. FR is formulated as;  

 
𝐹𝑅 =

𝑓𝑡
𝑡𝑟

 (5)  

where 𝑓𝑡 is the number of feasible trials, and 𝑡𝑟 is total number 
of independent runs. Of necessity, 𝐹𝑅 is between 0, and 1 
(Mezura-Montes, Miranda-Varela and Del Carmen Gómez-
Ramón, 2010).  

Success Rate (SR): A successful trial is an independent 
run, where the absolute difference between the best solution 
𝑓(�⃗�) and the target/optimal value 𝑓(�⃗�∗) is less than a 
predefined threshold. 𝑆𝑅 ∈ [0,1] is formulated as;  

 
𝑆𝑅 =

𝑠𝑡
𝑡𝑟

 (6)  

where 𝑠𝑡 is the number of feasible trials (Mezura-Montes, 
Miranda-Varela and Del Carmen Gómez-Ramón, 2010).  

Average Number of Fitness Evaluations for Optimality 
(AFESO): It is calculated by averaging the number of FES on 
each successful trial needed to reach the close neighborhood of 
𝑓(�⃗�∗). AFESO is formulated as; 
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𝐴𝐹𝐸𝑆𝑂 =

1
𝑠𝑡
�𝐹𝐸𝑆𝑖

𝑠𝑡

𝑖=1

. (7)  

Average Number of Fitness Evaluations for Feasibility 
(AFESF): Similarly, we propose an additional metric to 
measure the average convergence FES required by the 
algorithm to identify the first feasible solution. AFESF is 
formulated as; 

 
𝐴𝐹𝐸𝑆𝐹 =

1
𝑓𝑡
�𝐹𝐸𝑆𝐹𝑖

𝑓𝑡

𝑖=1

 (8)  

where 𝐹𝐸𝑆𝐹𝑖 denotes the number of fitness function 
evaluations needed to find the first feasible point in trial 𝑖. 

Success Performance (SP): Mezura-Montes et al. (2010) 
combines two metrics, 𝐴𝐹𝐸𝑆𝑂 and 𝑆𝑅, to measure the speed 
and reliability of an algorithm; 

 
𝑆𝑃 =

𝐴𝐹𝐸𝑆𝐹
𝑆𝑅

. (9)  

A low 𝑆𝑃 measure indicates that the algorithm is able to 
find the global optimum in less FES with high consistency.  

Feasibility Performance (FP): Similar to SP, we may 
generate a feasibility performance metric which combines two 
metrics, 𝐴𝐹𝐸𝑆𝐹 and 𝐹𝑅, to measure the speed and reliability 
of an algorithm to identify at least one feasible solution; 

 
𝐹𝑃 =

𝐴𝐹𝐸𝑆𝐹
𝐹𝑅

. (10)  

A low 𝐹𝑃 measure is preferred as it means that the 
algorithm requires less FES to find the first feasible solution 
and it is able to show the same behavior over several runs.  

The performance metrics SR, and AFESO employ a 
stopping criterion, |𝑓(�⃗�) − 𝑓(�⃗�∗)| ≤ 𝜀. Namely, the absolute 
error should be less than a predefined threshold 𝜀 before the 
search is terminated. However, the magnitude of 𝑓(�⃗�∗) is not 
considered while setting 𝜀. More specifically, a threshold 
value, 𝜀~1. 𝑒 − 4, is not a proper choice for a target fitness 
value of similar order of magnitude. Alternatively, we propose 
to replace the absolute error criterion with relative percentage 
error (RPE) measure to terminate the search process;  

 
 

𝑅𝑃𝐸 = |[𝑓(𝑥∗)− 𝑓(𝑥)]/𝑓(𝑥∗)| (11)  

 
Hence, Equation 4.8 sets a relative comparison metric and 

the search is terminated when 𝑅𝑃𝐸 ≤ 𝜀.  

 
Figure 1: Precision-accuracy trade-off in optimization 

Another point that must be highlighted is that the temporal 
requirements of the optimization problem to be solved may 
play an essential role during the selection process of a proper 
set of performance measures. Obviously, the principle of 
precision-accuracy trade-off applies in optimization domain 
and each optimization problem has a certain focal point that 

mainly lies on one side of precision-accuracy-scale, as 
depicted in Figure 1.  

Namely, certain type of problems may require that the 
optimization algorithm delivers a good solution with high 
precision in a single run due to the temporal limitations. In 
general, this may be a case where the optimization problems 
must be solved repetitively in a dynamic environment within a 
short time interval (for instance, optimization of the traffic load 
in a network system). Thus, the available computational budget 
is finite. Because of this, the algorithm cannot be rerun several 
times and it should precisely provide good (may not be 
globally optimal) solutions. For this type of COPs, high 
average performance and low deviation are vital aspects. 
Hence, FR, SR, AFES or their combinations might be 
appropriate measures. 

On the other hand, the nature optimization problem may 
allow exploring thoroughly the whole search region for a 
global optimum within adequately high temporal budget. The 
engineering design problems are usually of this type where a 
high quality solution in close vicinity of the global optimum 
should be found with several trials. In this case, precision is not 
the main objective since the best candidate point over all runs 
is selected as the final solution. Best-ever-objective function 
value is a proper indicator of performance. 

CONCLUSION 
Firstly, this chapter illustrated the principal characteristics 

of a good benchmark. Based on the abstracted guidelines, the 
benchmark problems are selected to test the different variants 
of the proposed algorithm.  

Precisely defined performance metrics are of paramount 
importance during the design stage of a NIA dealing with 
COPs, Also, a sound basis is necessary while comparing the 
proposed algorithm with other methods. Thus, the most 
common performance measures are discussed in this chapter. 
Moreover, we highlighted that the set of proper performance 
measures may change due to the specifications of the COP. 
Based on the findings of this chapter, a parameters analysis on 
the proposed algorithms will be conducted and the resulting 
algorithm will be compared with state-of-the-art methods 
addressing the same set of benchmark problems.  
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