
84

SOUTHEAST EUROPE JOURNAL OF SOFT COMPUTING
Available online at www.scjournal.com.ba

Performance Evaluation of Nature-Inspired Algorithms in constrained
Optimization

Ali Osman Kusakci a, Mehmet Can b
a Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71210, Ilidza,

akusakci@ius.edu.ba
b Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka Cesta 15, 71210, Ilidza,

mcan@ius.edu.ba

1. INTRODUCTION
A COP in n dimensional space can be defined by two
components: an objective function to be maximized or
minimized, and several inequality and equality constraints.
The general structure is defined as:

min or max 𝑓(𝑥),

𝑥 = [𝑥1, … , 𝑥𝑛]𝑇 ∈ 𝐹 ⊆ 𝑆 ⊆ ℝ𝑛
(1)

subject to

𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, … , 𝑟
(2)

 ℎ𝑖(𝑥) = 0, 𝑖 = 𝑟 + 1, … ,𝑚, (3)

where 𝑆 = ��⃗� ∈ ℝ𝑛�𝑙𝑗 ≤ 𝑥𝑗 ≤ 𝑢𝑗��, 𝑗 = 1, … ,𝑛 and 𝐹 =
{�⃗� ∈ 𝑆|𝑔𝑖(�⃗�) ≤ 0 𝑎𝑛𝑑 ℎ𝑖(�⃗�) = 0�}, �⃗� is solution vector
�⃗� = [𝑥1, … , 𝑥𝑛]𝑇, r is the number of inequality and m-r is the

Abstract— (In almost all scientific contributions to the field of Nature-Inspired Algorithms (NIAs), the researchers
select some benchmark test suites, which makes possible to draw conclusions on the merit of the proposed algorithm.
Hence, it is a vital task to compose comprehensive test suites with the aim of covering variety of different scenarios.
Furthermore, while conducting comparative analysis of results obtained with NIAs, selection of the proper performance
indicators are of paramount importance. This paper intends to address these two topics with a special stress on NIAs
designed for constrained optimization.)

Keywords—constrained optimization, evolutionary algorithms, nonlinear programming, performance
measures, benchmark test suites

http://www.scjournal.com.ba/
mailto:mcan@ius.edu.ba

85

number of equality constraints. Some researchers convert
equality constraints into inequalities by adding a small

tolerance 𝜖 > 0.

There have been innumerable benchmark problems
introduced in the field of nonlinear constrained optimization by
the researchers. In the vast realm of nonlinear programming
with nature-inspired algorithms (NIAs), collecting all
constrained optimization problems (COPs) is a cumbersome
task to be realized. Keeping this fact in mind, this work
attempts to bring together the most common COPs while
testing the performance of NIAs by the practitioners.
Moreover, the composition of test suites should allow
evaluating the performance of the algorithm under various
conditions.

Second aim of this work is to address the performance
measures used in the domain and contrast their informative
characteristics. While conducting comparative analysis of
results obtained with NIAs, selection of the proper
performance indicators are of paramount importance.

The rest of this work is organized as follows: The essential
guidelines when selecting a representative benchmark set and
the general properties of most common COPs benchmarks are
given in Section II. Section III is devoted to setting up proper
performance measures to verify the merit of a proposed NIA in
constrained optimization domain. Lastly, the findings are
summarized in Section IV.

BENCHMARK PROBLEMS

2.1. Selection Guidelines
The benchmark problems in the domain may be grouped

into two main classes based on the resource that they originated
from (El-Ghazali, 2009):

1. Artificial Problems: From the early stages of the
intelligent problem solving with NIAs, different researchers
from various backgrounds have introduced countless many
COPs. Gradually, their individual contributions have been
collected to form benchmark problem sets. In general, the
primary goal of such benchmark sets is to cover as many
problems variants as possible in order to provide a reliable test
basis. On the other hand, the advantage of such collections is
that they are evaluated by various methods and the results
obtained by these methods are easily accessible (Eiben and
Smith, 2008).

Another main source of benchmark problems is the
problem generators that have been developed by the
researchers. Two most referred examples of such generators
can be found in (Spears, 2004) and (Gallagher and Yuan,
2006). Their main drawback is that the problems generated by
a certain generator are of the same or similar type since the test
problem generators usually rely on certain problem
construction principles. Thus, they may not yield to reliable
results for test algorithms claiming to be robust (Yu and Gen,
2010).

2. Real life problems: This type of problems originates
from a real life challenge. They form especially valuable

benchmarks while testing the applicability of the algorithm in
various field of science. On the other hand, the data of a real
life problem is usually unavailable to the whole research
community due to the potential copyrights and confidentiality
consequences. Thus, repeating the numerical experiments on
the data is mostly not a feasible option. This, in turn, makes the
comparison of different algorithms on the same problem barely
possible (Yu and Gen, 2010). Furthermore, the generalization
of the obtained results is highly difficult since such problems
usually involve some domain specific aspects.

After introduction of the two main sources of benchmark
problems, we would like to specify the main characteristics that
a good benchmark should possess. Namely, a NIA must be
evaluated on various test problems covering different variants
of COPs to investigate its convergence behavior. In other
words, the set of instances must be diverse in terms of their
difficulties and structure (El-Ghazali, 2009). Especially, COPs
with challenging properties, including multimodality,
sparseness of feasible space, non-separability should be
included in the test bed to evaluate the robustness of an
algorithm. However, we should keep in mind that robustness is
only one of the criterions while proving the merit of an
algorithm. Alternatively, a performance evaluation study may
reveal the conditions under which the algorithm can be
successfully applied.

Throughout the extensive course of research in the domain,
some general guidelines for generating test beds for NIAs have
been generated by Eiben and Smith (2008) from various
resources:

• A few unimodal instances should be provided to test
the convergence speed of the algorithm.

• Several multimodal functions with a large number of
local optima must be included in the test suite to examine the
behavior of the algorithm when dealing with many local
optima. Additionally, this type of functions may be good
touchstones to evaluate the robustness of the algorithm.
Namely, an algorithm reaching the solutions of the same
quality among many local optima in each distinct run proves its
robustness.

• As an additional robustness measure, the algorithm
should be tested on problems with random noise.

• The test suite must contain some scalable problems in
terms of problem variables and search range. By testing the
algorithm on scalable problems, we may check the possible
performance deficiencies due to the enlargement of the search
region.

• The convergence performance of the algorithm should
be tested also on non-separable objective functions.

In addition to the points stated by them for a general
purpose NIA, we extracted some standards for nonlinear
constrained optimization test suites. We propose the following
guidelines specifically apply for constrained optimization
problems:

• The algorithm should provide a proper way of
handling not only inequality constraints but also equality type
ones. Thus, COPs with high number of equality constraints
must be present in the test set. Especially, highly nonlinear

86

equality constraints may be challenging for a constrained
handling method.

• Some COPs with sparse feasible domain should be
included in the benchmark set. This allows testing the
explorative power of the algorithm under such scenario.

• COPs with global optimum lying on the constrained
boundary are challenging benchmarks for most NIAs and they
should comprise an essential part of the test suite.

• Some NIAs may exploit the above mention property
of a COP. Thus, the opposite case, global optimum not on the
boundary, must be analyzed.

• Some constrained handling mechanism may easily
distract the search process in COPs with small number of
constraints and simple structures although they behave well in
highly constrained environments. The distraction is usually
paid as unnecessary computational cost in such COPs. Thus,
some COPs of low complexity may be added to observe this
effect.

Obviously, there is still space for more work in this
direction. More proper test suites may be composed to test the
above-mentioned issues. The next section states the most
common test suites used to test NIAs and summarizes the
general properties of the COPs included in these test suites.

2.2. Benchmark Problems

CEC2006 Benchmark
The CEC2006 test suite is composed of 24 problems that

have been proposed by various researchers (Liang et al., 2006).
Since the problems are collected from different resources, the
problem set may be considered as a unique case covering a
wide range of problem classes with novel properties.

The 24 problems brought together by Liang et al. (2006)
and were subject to a competition organized by IEEE
community in 2006. The general properties of the benchmark
problems are given in Table 1 (Liang et al., 2006) where n
indicates the number of variables, and ρ is the ratio of feasible
individuals over 1,000,000 random individuals generated with
uniform distribution within the definition domain of the
problem. LI, NI, LE, and NE stand for the numbers of linear
inequalities, nonlinear inequalities, linear equalities, and
nonlinear inequalities, respectively. Here, act shows the
number of active constraints at the optimum point, �⃗�∗.

Mezura-Montes et al. (2010) classifies the CEC2006
problems based on two criterions; number of decision
variables, and type of constraints, given in Table 2, and Table
3.

CEC2010 Benchmark
The second test suite worth mentioning is generated by

Mallipeddi and Suganthan (2010c), see Table 4. Their intention
was to offer an alternative benchmark set to the well-known 24
problems, which have been extensively studied and solved by
many algorithms. Thus, it has become almost impossible to
demonstrate the superiority of newly designed constrained
handling methods. Another motivation was to construct a test
suite with scalable problems in terms of decision variables
(Mallipeddi and Suganthan, 2010).

Additionally, in this test suite, the objective functions and
constraints are rotated by a certain rotation matrix M. The
rotation operation is justified by the fact that a COP with
multiple sparse feasible regions parallel to the coordinate axes
can be solved better by algorithms employing line search or
difference of two or more solution vectors. Namely, the
rotation aims fostering a fair environment of comparison
(Mallipeddi and Suganthan, 2010).

TABLE 1: GENERAL PROPERTIES OF CEC2006 BENCHMARK PROBLEMS

Prob. n Type of
function

ρ LI NI LE NE act

g01 13 quadratic 0.0111% 9 0 0 0 6

g02 20 nonlinear 99.9971% 0 2 0 0 1

g03 10 polynomial 0.0000% 0 0 0 1 1

g04 5 quadratic 52.1230% 0 6 0 0 2

g05 4 cubic 0.0000% 2 0 0 3 3

g06 2 cubic 0.0066% 0 2 0 0 2

g07 10 quadratic 0.0003% 3 5 0 0 6

g08 2 nonlinear 0.8560% 0 2 0 0 0

g09 7 polynomial 0.5121% 0 4 0 0 2

g10 8 linear 0.0010% 3 3 0 0 6

g11 2 quadratic 0.0000% 0 0 0 1 1

g12 3 quadratic 4.7713% 0 1 0 0 0

g13 5 nonlinear 0.0000% 0 0 0 3 3

g14 10 nonlinear 0.0000% 0 0 3 0 3

g15 3 quadratic 0.0000% 0 0 1 1 2

g16 5 nonlinear 0.0204% 4 34 0 0 4

g17 6 nonlinear 0.0000% 0 0 0 4 4

g18 9 quadratic 0.0000% 0 13 0 0 6

g19 15 nonlinear 33.4761% 0 5 0 0 0

g20 24 linear 0.0000% 0 6 2 12 16

g21 7 linear 0.0000% 0 1 0 5 6

g22 22 linear 0.0000% 0 1 8 11 19

g23 9 linear 0.0000% 0 2 3 1 6

g24 2 linear 79.6556% 0 2 0 0 2

Since all problems in the test set are scalable, a
classification based on the number of problem variables is not
reasonable. The competition organized by IEE (CEC 2010
Competition of Constrained Real-Parameter Optimization)
required the participating researchers to solve the problems for
𝑛 = 10, and 𝑛 = 30. The classification of the problems based
on the type of the constraints is shown in Table 5.

TABLE 2:CLASSIFICATION OF CEC2006 PROBLEMS BASED ON THE NUMBER OF
DECISION VARIABLES (MEZURA-MONTES, MIRANDA-VARELA AND DEL

CARMEN GÓMEZ-RAMÓN, 2010)

Class n Problem
High 10-20 g01, g02, g03, g07, g14, g19, g20, g22
Medium 5-9 g04, g09, g10, g13, g16, g17, g18, g21,

g23
Low 2-4 g05, g06, g08, g11, g12, g15, g24

87

TABLE 3: CLASSIFICATION OF CEC2006 PROBLEMS BASED ON THE
CONSTRAINT TYPES (MEZURA-MONTES, MIRANDA-VARELA AND DEL

CARMEN GÓMEZ-RAMÓN, 2010)

Class Problem
Only inequalities g01, g02, g04, g06, g07, g08, g09, g10,

g12, g16, g18, g19, g24
Only equalities g03, g11, g13, g14, g15, g17
Inequalities and equalities g05, g20, g21, g22, g23

TABLE 4: GENERAL PROPERTIES OF CEC2010 BENCHMARK PROBLEMS FOR
N=10; SEP.: SEPARABLE, NON SEP.: NON SEPARABLE, ROT.: ROTATED

(MALLIPEDDI AND SUGANTHAN, 2010)

Problem/Search
Range

Type of
function

Sep.?
(0/1)

Eq. Ineq. 𝝆%

C01 [0,10]n nonlinear 0 0 2 Non
Sep.

99.76

C02 [-5.12,5.12] n linear 1 1 Sep. 2 Sep. 0

C03 [-1000,1000] n polynomial 0 1 Non Sep. 0 0

C04 [-50,50] n linear 1 2 Non
Sep., 2

Sep.

0 0

C05 [-600,600] n linear 1 2 Sep. 0 0

C06 [-600,600] n linear 0 2 Rot. 0 0

C07 [-140,140] n polynomial 0 0 1 Sep. 50.51

C08 [-140,140] n polynomial 0 0 1 Rot. 37.95

C09 [-500500] n polynomial 0 1 Sep. 0 0

C10 [-500,500] n polynomial 0 1 Rot. 0 0

C11 [-100,100] n nonlinear Rot. 1 Non Sep. 0 0

C12 [-1000,1000] n nonlinear 1 1 Non Sep. 1 Sep. 0

C13 [-500,500] n nonlinear 1 0 2 Sep.,
1 Non
Sep.

0

C14 [-1000,1000] n polynomial 0 0 3 Sep. 0.31

C15 [-1000,1000] n polynomial 0 0 3 Rot. 0.32

C16 [-10,10] n nonlinear 0 2 Sep. 1 Sep.,
1 Non
Sep.

0

C17 [-10,10] n quadratic 0 1 Sep. 2 Non
Sep.

0

C18 [-50,50] n quadratic 0 1 Sep. 1 Sep. 0.001

TABLE 5: CLASSIFICATION OF CEC 2010 PROBLEMS BASED ON THE
CONSTRAINT TYPES

Class Problem
Only inequalities C01, C07, C08, C13, C14, C15
Only equalities C03, C04, C05, C06, C12

Inequalities and equalities C02, C09, C10, C11, C16, C17, C18

Engineering Design Problems
The third group of problems introduced here is the

engineering design problems collected from various resources.
Here, we note that the number of problems possibly put in this
set is more than we included in this work (Yiqing, Xigang and
Yongjian, 2007; Lin, Hwang and Wang, 2004; Costa and
Oliveira, 2001). However, we have selected the most common
problems. The first problem is pressure vessel design problem
(g40) stated in (Zahara and Kao, 2009). The problem g41 is
named in the literature as welded beam design problem. It is
firstly formulated in (Kannan and Kramer, 1994) while it attain
its standard form in later works. Tension/compression spring

(g42) and speed reducer (g43) problems are also the two most
cited design problems in the literature (Liu, Cai and Wang,
2010) whereas the car side impact design (g44) and stepped
cantilever beam (g45) problems are not frequently used for test
purposes (Gandomi, Yang and Alavi, 2011).

Their current formulations we referred are the most
common ones stated in the conventional research papers.
Namely, there are slight differences in the problem statements
in various sources. In general, the engineering design problems
have been modified and standardized since their first
appearance in the NIA domain. Thus, the collection process
was not a straightforward task. The general properties of the
selected problems are summarized in Table 6.

TABLE 6: GENERAL PROPERTIES OF SELECTED ENGINEERING DESIGN
PROBLEMS

Prob. n Type of
function

ρ LI NI act

g40 4 polynomial 41.50% 3 1 2

g41 4 polynomial 2.64% 2 5 1

g42 3 polynomial 0.75% 1 3 2

g43 7 nonlinear 0.21% 2 9 4

g44 11 linear 3.56% 0 10 1

g45 10 nonlinear 0.43% 5 6 5

PERFORMANCE MEASURES
Performance evaluation plays an essential role while

proving the merit of a heuristic algorithm. Namely, we need
objective criterions relying on a sound basis to confirm the
effectiveness of the proposed method. Hence, it is highly
important to define the performance measures in a systematical
manner. This is a necessary step not only when comparing two
different algorithms but also when tuning the control
parameters of the algorithm during the design stage.

The employed performance measures may be directly
obtained from the solutions found by the algorithm or extracted
indirectly based on the statistical comparison methods.
Needless to say, the performance evaluations should be
conducted based on the experiments over several independent
runs due to the stochastic nature of the NIAs. In general, the
success of an algorithm is measured based on three basic
metrics or some indirect values derived from these (Eiben and
Smith, 2008):

• Solution quality (effectiveness)
• Speed (efficiency)
• Success rate (robustness)

The first performance measure considers the objective
function value achieved within a limited computational time as
the main indicator of the success of an algorithm whereas the
second metric aims to measure the success based on the
computational cost needed to achieve a predefined solution.
Namely, the former specifies the computational time and assess
the obtained objective function value while the latter one does
the reverse.

In general, the solution quality is defined as the mean best
objective function value (MBOV) over a certain number of

88

independent runs. MBOV is calculated by identifying the best
objective function value achieved in each run and taking the
average of these values (Eiben and Smith, 2008). The best-
ever- or the worst-ever-objective function value may be also of
great interest for some test cases

A complementary strategy is to identify a satisfactory
candidate solution and to measure the computational effort
needed to reach that fitness level. A frequently used metric of
computational effort is the number of fitness function
evaluations (FES) required to find that solution.

Although FES is the most common metric, the direct
indicator of computational effort is the CPU time which is
defined by El-Ghazali (2009) as the time a processor spends in
the execution of the algorithm. However, CPU time may
change depending on the specifications of the machine, on
which the algorithm is run, operating system, the programming
language, and software architecture. Namely, a comparison
based on CPU times necessitates the recreation of the
algorithms under consideration. Because recreating an
algorithm based on the details given in a scientific paper is, in
general, very cumbersome, the most common practice in the
literature we referred is to report more generic indicators,
including the number of function evaluations (FES), the best
value obtained so far, percentage of successful runs, and
standard deviation, which are indifferent to machine settings.

While employing FES as a performance metric, it is
assumed that an essential proportion of the CPU time is used
by the evaluation process of fitness function. This assumption
holds for most of the real-world optimization problems with
computation-intensive objective functions (El-Ghazali, 2009).
In this regard, the ratio of the total CPU time needed to execute
an algorithm for certain number of iterations, 𝑇2, over the time
spent for fitness function evaluations, 𝑇1, can be calculated,
which may indicate the complexity of the algorithm, 𝐴𝑐𝑜𝑚𝑝
(Mallipeddi and Suganthan, 2010):

𝐴𝑐𝑜𝑚𝑝 = (𝑇2 − 𝑇1)/𝑇1. (4)

To test whether FES is a proper metric in CEC2010 for
computational effort, we have extracted the algorithm
complexity values, 𝐴𝑐𝑜𝑚𝑝, reported in each paper for 10
dimensional problem set participated in the competition.
Surprisingly, the values range from 6.59% to 853%. Namely,
the computational overhead induced by an algorithm may vary
in a broad interval. Hence, FES may not be good indicator of
the speed for some algorithms with very complex structures.

Additional to the criticism above, Eiben and Smith (2008)
state that employing FES may be misleading if a NIA uses
“hidden labor”, for instance, a time consuming local search
heuristics embedded into the algorithm (Pelley, Innocente and
Sienz, 2011; Sun and Garibaldi, 2010). In such cases, extra
computational costs or additional function evaluations required
by the local search procedure remain usually neglected.

The third criterion evaluates the robustness of the algorithm
in terms of number of runs in which a predefined objective
function value within the specified computation time has been
achieved. The success rate (SR) is defined as the ratio of
successful runs over total number of runs. The total number of

runs should be specified such that the obtained results allow
drawing statistical conclusions.

To sum up, a proper performance evaluation method should
consider all these three aspects together. Also, we should keep
in mind that different performance measures may yield
different conclusions (Garcia et al., 2008; Smith, 2007).

Additionally, some graphical tools may be relatively useful
to visualize the performance differences between various
methods. Convergence graphs and box plots are very common
means of visualization. The convergence graphs demonstrate
the convergence behavior of the algorithm to a given objective
value over the number of fitness function evaluations or the
generations. They are usually represented in logarithmic scale.
The box plots are used to show the solution quality and
reliability of the algorithm over a specified number of
independent runs. Obviously, the algorithm with higher mean
fitness value and lower deviation is desired.

3.1. Performance Measures for COPs
This section is devoted to the performance measures

specifically designed for COPs. In addition to the objective
function value, we may define two additional solution quality
measures related to the feasibility status of the solution: (i) the
sum of constraint violation, and (ii) the number of constraints
violated. In some cases, a feasible solution, though not be the
optimal one, may be of paramount importance. Thus, finding
feasible points quickly in a highly constrained search region is
also a desired property.

Mezura-Montes et al. (2010) have utilized four metrics to
measure the performance of NIAs for constrained optimization.
At this point, we note that the performance measures given
below rely on the assumption that a target solution can be
identified while it is either the known global optimum or a
satisfactory candidate solution. We denote this target solution
with 𝑓(�⃗�∗).

Feasibility Rate (FR): With reference to the above
discussion, they define feasibility rate (FR) metric showing the
percentage of runs where feasible solutions are found. A
feasible run is an independent trial at least with one feasible
solution. FR is formulated as;

𝐹𝑅 =

𝑓𝑡
𝑡𝑟

 (5)

where 𝑓𝑡 is the number of feasible trials, and 𝑡𝑟 is total number
of independent runs. Of necessity, 𝐹𝑅 is between 0, and 1
(Mezura-Montes, Miranda-Varela and Del Carmen Gómez-
Ramón, 2010).

Success Rate (SR): A successful trial is an independent
run, where the absolute difference between the best solution
𝑓(�⃗�) and the target/optimal value 𝑓(�⃗�∗) is less than a
predefined threshold. 𝑆𝑅 ∈ [0,1] is formulated as;

𝑆𝑅 =

𝑠𝑡
𝑡𝑟

 (6)

where 𝑠𝑡 is the number of feasible trials (Mezura-Montes,
Miranda-Varela and Del Carmen Gómez-Ramón, 2010).

Average Number of Fitness Evaluations for Optimality
(AFESO): It is calculated by averaging the number of FES on
each successful trial needed to reach the close neighborhood of
𝑓(�⃗�∗). AFESO is formulated as;

89

𝐴𝐹𝐸𝑆𝑂 =

1
𝑠𝑡
�𝐹𝐸𝑆𝑖

𝑠𝑡

𝑖=1

. (7)

Average Number of Fitness Evaluations for Feasibility
(AFESF): Similarly, we propose an additional metric to
measure the average convergence FES required by the
algorithm to identify the first feasible solution. AFESF is
formulated as;

𝐴𝐹𝐸𝑆𝐹 =

1
𝑓𝑡
�𝐹𝐸𝑆𝐹𝑖

𝑓𝑡

𝑖=1

 (8)

where 𝐹𝐸𝑆𝐹𝑖 denotes the number of fitness function
evaluations needed to find the first feasible point in trial 𝑖.

Success Performance (SP): Mezura-Montes et al. (2010)
combines two metrics, 𝐴𝐹𝐸𝑆𝑂 and 𝑆𝑅, to measure the speed
and reliability of an algorithm;

𝑆𝑃 =

𝐴𝐹𝐸𝑆𝐹
𝑆𝑅

. (9)

A low 𝑆𝑃 measure indicates that the algorithm is able to
find the global optimum in less FES with high consistency.

Feasibility Performance (FP): Similar to SP, we may
generate a feasibility performance metric which combines two
metrics, 𝐴𝐹𝐸𝑆𝐹 and 𝐹𝑅, to measure the speed and reliability
of an algorithm to identify at least one feasible solution;

𝐹𝑃 =

𝐴𝐹𝐸𝑆𝐹
𝐹𝑅

. (10)

A low 𝐹𝑃 measure is preferred as it means that the
algorithm requires less FES to find the first feasible solution
and it is able to show the same behavior over several runs.

The performance metrics SR, and AFESO employ a
stopping criterion, |𝑓(�⃗�) − 𝑓(�⃗�∗)| ≤ 𝜀. Namely, the absolute
error should be less than a predefined threshold 𝜀 before the
search is terminated. However, the magnitude of 𝑓(�⃗�∗) is not
considered while setting 𝜀. More specifically, a threshold
value, 𝜀~1. 𝑒 − 4, is not a proper choice for a target fitness
value of similar order of magnitude. Alternatively, we propose
to replace the absolute error criterion with relative percentage
error (RPE) measure to terminate the search process;

𝑅𝑃𝐸 = |[𝑓(𝑥∗)− 𝑓(𝑥)]/𝑓(𝑥∗)| (11)

Hence, Equation 4.8 sets a relative comparison metric and

the search is terminated when 𝑅𝑃𝐸 ≤ 𝜀.

Figure 1: Precision-accuracy trade-off in optimization

Another point that must be highlighted is that the temporal
requirements of the optimization problem to be solved may
play an essential role during the selection process of a proper
set of performance measures. Obviously, the principle of
precision-accuracy trade-off applies in optimization domain
and each optimization problem has a certain focal point that

mainly lies on one side of precision-accuracy-scale, as
depicted in Figure 1.

Namely, certain type of problems may require that the
optimization algorithm delivers a good solution with high
precision in a single run due to the temporal limitations. In
general, this may be a case where the optimization problems
must be solved repetitively in a dynamic environment within a
short time interval (for instance, optimization of the traffic load
in a network system). Thus, the available computational budget
is finite. Because of this, the algorithm cannot be rerun several
times and it should precisely provide good (may not be
globally optimal) solutions. For this type of COPs, high
average performance and low deviation are vital aspects.
Hence, FR, SR, AFES or their combinations might be
appropriate measures.

On the other hand, the nature optimization problem may
allow exploring thoroughly the whole search region for a
global optimum within adequately high temporal budget. The
engineering design problems are usually of this type where a
high quality solution in close vicinity of the global optimum
should be found with several trials. In this case, precision is not
the main objective since the best candidate point over all runs
is selected as the final solution. Best-ever-objective function
value is a proper indicator of performance.

CONCLUSION
Firstly, this chapter illustrated the principal characteristics

of a good benchmark. Based on the abstracted guidelines, the
benchmark problems are selected to test the different variants
of the proposed algorithm.

Precisely defined performance metrics are of paramount
importance during the design stage of a NIA dealing with
COPs, Also, a sound basis is necessary while comparing the
proposed algorithm with other methods. Thus, the most
common performance measures are discussed in this chapter.
Moreover, we highlighted that the set of proper performance
measures may change due to the specifications of the COP.
Based on the findings of this chapter, a parameters analysis on
the proposed algorithms will be conducted and the resulting
algorithm will be compared with state-of-the-art methods
addressing the same set of benchmark problems.

REFERENCES

Costa, L. and Oliveira, P., 2001. Evolutionary algorithms approach to
the solution of mixed integer non-linear programming problems.
Computers & Chemical Engineering, [online] 25(2-3), pp.257–266.
Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S0098135400006530>
[Accessed 4 Mar. 2013].

Eiben, A.E. and Smith, J.E., 2008. Introduction to evolutionary
computing. 2nd ed. Springer, p.304.

El-Ghazali, T., 2009. Metaheuristics: from design to implementation.
[online] Jonh Wiley and Sons Inc., Chichester. Hoboken: John Wiley
& Sons. Available at:
<http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:

Precision Accuracy

90

Metaheuristics:+from+design+to+implementation#0> [Accessed 13
Dec. 2012].

Gallagher, M. and Yuan, B., 2006. A general-purpose tunable
landscape generator. Evolutionary Computation, IEEE Transactions
on, .

Gandomi, A.H., Yang, X.-S. and Alavi, A.H., 2011. Mixed variable
structural optimization using Firefly Algorithm. Computers &
Structures, [online] 89(23-24), pp.2325–2336. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S0045794911002185>
[Accessed 7 Nov. 2012].

Garcia, S. et al., 2008. A study of statistical techniques and
performance measures for genetics-based machine learning: accuracy
and interpretability. Soft Computing, [online] 13(10), pp.959–977.
Available at: <http://www.springerlink.com/index/10.1007/s00500-
008-0392-y> [Accessed 2 Mar. 2013].

Kannan, B.K. and Kramer, S.N., 1994. An Augmented Lagrange
Multiplier Based Method for Mixed Integer Discrete Continuous
Optimization and its Applications to Mechanical Design. Journal of
Mechanical Design, 116(June), pp.405–411.

Liang, J.J. et al., 2006. Problem Definitions and Evaluation Criteria
for the CEC 2006 Special Session on Constrained Real-Parameter
Optimization Problem Definitions and Evaluation Criteria for the
CEC 2006 Special Session on Constrained Real-Parameter
Optimization. Evolutionary Computation, pp.251–256.

Lin, Y.-C., Hwang, K.-S. and Wang, F.-S., 2004. A mixed-coding
scheme of evolutionary algorithms to solve mixed-integer nonlinear
programming problems. Computers & Mathematics with
Applications, [online] 47(8-9), pp.1295–1307. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S089812210490123X>.

Liu, H., Cai, Z. and Wang, Y., 2010. Hybridizing particle swarm
optimization with differential evolution for constrained numerical
and engineering optimization. Applied Soft Computing, [online]
10(2), pp.629–640. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S1568494609001550>
[Accessed 6 Oct. 2012].

Mallipeddi, R. and Suganthan, P.N., 2010. Problem Definitions and
Evaluation Criteria for the CEC 2010 Competition on Constrained
Real- Parameter Optimization. Singapore.

Mezura-Montes, E., Miranda-Varela, M.E. and Del Carmen Gómez-
Ramón, R., 2010. Differential evolution in constrained numerical
optimization: An empirical study. Information Sciences, [online]
180(22), pp.4223–4262. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S0020025510003415>
[Accessed 29 Mar. 2012].

Pelley, C., Innocente, M. and Sienz, J., 2011. Memetic Particle
Swarm for Continuous Unconstrained and Constrained Optimization
Problems. In: ICSI 2011: International conference on swarm
intelligence. [online] pp.1–9. Available at:
<http://icsi11.eisti.fr/papers/paper_9.pdf> [Accessed 9 May 2012].

Smith, J., 2007. On replacement strategies in steady state
evolutionary algorithms. Evolutionary computation, [online] 15(1),
pp.29–59. Available at:
<http://www.ncbi.nlm.nih.gov/pubmed/17388778> [Accessed 17
Dec. 2012].

Spears, W.M., 2004. Evolutionary algorithms: The role of mutation
and recombination. Berlin, Heidelberg: Springer, p.222.

Sun, J. and Garibaldi, J.M., 2010. A novel memetic algorithm for
constrained optimization. IEEE Congress on Evolutionary
Computation, [online] pp.1–8. Available at:
<http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=55
85938>.

Yiqing, L., Xigang, Y. and Yongjian, L., 2007. An improved PSO
algorithm for solving non-convex NLP/MINLP problems with
equality constraints. Computers & Chemical Engineering, [online]
31(3), pp.153–162. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S0098135406001281>
[Accessed 4 Mar. 2013].

Yu, X. and Gen, M., 2010. Introduction to Evolutionary Algorithms.
London: Springer.

Zahara, E. and Kao, Y.-T., 2009. Hybrid Nelder–Mead simplex
search and particle swarm optimization for constrained engineering
design problems. Expert Systems with Applications, [online] 36(2),
pp.3880–3886. Available at:
<http://linkinghub.elsevier.com/retrieve/pii/S0957417408001735>
[Accessed 28 Apr. 2012].

	1. Introduction
	Benchmark Problems
	2.1. Selection Guidelines
	2.2. Benchmark Problems
	CEC2006 Benchmark
	CEC2010 Benchmark
	Engineering Design Problems

	Performance Measures
	3.1. Performance Measures for COPs

	CONCLUSION
	References

