

Southeast

Available online

VOL.2 NO.

Randomized Algorithms in Bioinformatics:

Mehmet Can, Hüseyin Lutin

International University of Sarajevo, Faculty of Engineering and Natural Sciences

Ilidža71210 Sarajevo, Bosnia and Herzegovina

Article Info
Article history:
Recivied 17 Sep.2013

Recivied in revised form 17 Oct 2013

Keywords:
Randomized algorithms, sorting

problems, linear time algorithm

1. INTRODUCTION

QUICKSORT discovered by Tony Hoare in 1962 (Hoare,

1962;Hoos, and Stützle 1998) is a fast and simple sorting

technique. It selects an element m(typically, the first) from

an array c and simply partitions the array into two

subarrays: csmall, containing all elements from c that are

smaller than m; and clarge containing all elements la

than m.

This partitioning can be done in linear time, and by

following a divide-and conquer strategy, QUICKSORT

recursively sorts each subarray in the same way. The

sorted list is easily created by simply concatenating the

sorted csmall, element m, and the sorted

pseudocode is as follows (Jones, and Pevzner 2004).

QUICKSORT(c)

1 if c consists of a single element

2 return c

3 m ← c1

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

6 QUICKSORT(csmall)

7 QUICKSORT(clarge)

Southeast Europe Journal of Soft Computing

Available online:www.scjournal.com.ba

NO.2September 2013 - ISSN 2233 – 1859

Randomized Algorithms in Bioinformatics: RANDOMIZEDCAMSORT

Faculty of Engineering and Natural Sciences, Hrasnicka Cesta 15,

Bosnia and Herzegovina

Abstract
Randomized algorithms make random decisions throughout their

operation. At first glance, making random decisions does not seem

particularly helpful. Basing an algorithm on random decisions sounds

like a recipe for disaster, but the fact that a randomized a

undertakes a nondeterministic sequence of operations often means that,

unlike deterministic algorithms; no input can reliably produce worst

case results. (Karp 1991). Randomized algorithms are often used in hard

problems where an exact, polynomial-time algorithm is not known. In

this paper we will see how randomized algorithms solve the Sorting

problems.

QUICKSORT discovered by Tony Hoare in 1962 (Hoare,

is a fast and simple sorting

(typically, the first) from

and simply partitions the array into two

, containing all elements from c that are

containing all elements larger

This partitioning can be done in linear time, and by

and conquer strategy, QUICKSORT

recursively sorts each subarray in the same way. The

sorted list is easily created by simply concatenating the

d the sorted clarge. A

pseudocode is as follows (Jones, and Pevzner 2004).

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

8 Combine csmall , m, and clarge into a single sorted array

csorted

9 return csorted

It turns out that the running time of QUICKSORT depends

on how lucky we are with our selection of the element

If we happen to choose m in such a way that

even halves (i.e., |csmall| = |clarge|), then

�	��� 	� 	2�	��/2�

where ���� represents the time taken by QUICKSORT to

sort an array of n numbers, and

required to split the array of size n

positive constant. It leads to 	��
However, if we choose m in such a way that it splits

unevenly (e.g., an extreme case occurs when

empty andclarge has �
 1 elements), then the recurrence

looks like

�	��� 	� 	�	��
 1�

It leads to 	���� running time, something we want to

avoid. Indeed, QUICKSORT takes quadratic time to sort

the array ��, �	
 	1, . . . , 2, 1�.	

Worse yet, it requires 	���� time to process

1, ��, which seems unnecessary since the array is already

sorted.

ANDOMIZEDCAMSORT

Cesta 15,

Randomized algorithms make random decisions throughout their

operation. At first glance, making random decisions does not seem

particularly helpful. Basing an algorithm on random decisions sounds

like a recipe for disaster, but the fact that a randomized algorithm

undertakes a nondeterministic sequence of operations often means that,

no input can reliably produce worst-

. Randomized algorithms are often used in hard

time algorithm is not known. In

this paper we will see how randomized algorithms solve the Sorting

8 Combine csmall , m, and clarge into a single sorted array

It turns out that the running time of QUICKSORT depends

on how lucky we are with our selection of the element m.

se m in such a way that c is split into

even halves (i.e., |csmall| = |clarge|), then

� 	� 	��,	

represents the time taken by QUICKSORT to

numbers, and an represents the time

n into two parts; a is a

�	���	�� running time.

in such a way that it splits c

unevenly (e.g., an extreme case occurs when csmall is

elements), then the recurrence

� 	� 	��	

running time, something we want to

avoid. Indeed, QUICKSORT takes quadratic time to sort

time to process �1, 2, . . . , �

which seems unnecessary since the array is already

84 M. Can, H. Lutin/ Southeast Europe Journal of Soft Computing Vol.2 No.2Sep. 2013 (83-87)

Figure 1. Implementation of QUICKSORT

EXAMPLE 1. A MATHEMATICA Code for

QUICKSORT

c= {18,14,15,5,20,11,4,1,6,7,10,2,19,16,13,9}

n=Length[c];

Divide

c1={}; c2={};

m=First[c]

Do[{If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]

]]]},{i,1,n}]

c1 c2

8 {6,5,1,2,7,3,4} {8,13,16,11,20,12,19,17,15,9}

c=c1;

n=Length[c];

c11={}; c12={};

m=First[c]

Do[{If[c[[i]]<m,c11=Append[c11,c[[i]]],c12=Append[c12,

c[[i]]]]},{i,1,n}]

c11 c12

6 {5,1,2,3,4} {6,7}

c=c11;

n=Length[c];

c111={}; c112={};

m=First[c]

Do[{If[c[[i]]<m,c111=Append[c111,c[[i]]],c112=Append[

c112,c[[i]]]]},{i,1,n}]

c111 c112

5 {1,2,3,4} {5}

c=c2;

n=Length[c];

c21={}; c22={};

m=Take[c,{3}][[1]];

Do[{If[c[[i]]<m,c21=Append[c21,c[[i]]],c22=Append[c22,

c[[i]]]]},{i,1,n}]

c21 c22

16 {8,13,11,12,15,9} {16,20,19,17}

c=c21;

n=Length[c];

c211={}; c212={};

m=Take[c,{3}][[1]]

Do[{If[c[[i]]<m,c211=Append[c211,c[[i]]],c212=Append[

c212,c[[i]]]]},{i,1,n}]

c211 c212

11 {8,9} {13,11,12,15}

c=c212;

n=Length[c];

c2121={}; c2122={};

m=First[c]

Do[{If[c[[i]]<m,c2121=Append[c2121,c[[i]]],c2122=Appe

nd[c2122,c[[i]]]]},{i,1,n}]

c2121 c2122

13 {11,12} {13,15}

c=c22;

n=Length[c];

c221={}; c222={};

m=Take[c,{3}][[1]]

Do[{If[c[[i]]<m,c221=Append[c221,c[[i]]],c222=Append[

c222,c[[i]]]]},{i,1,n}]

c221 c222

19 {16,17} {20,19}

Concur

sc11=Join[c111,c112]

{1,2,3,4,5}

85 M. Can, H. Lutin/ Southeast Europe Journal of Soft Computing Vol.2 No.2Sep. 2013 (83-87)

sc1=Join[sc11,c12]

{1,2,3,4,5,6,7}

c222=Reverse[c222]

{19,20}

sc22=Join[c221,c222]

{16,17,19,20}

sc212=Join[c2121,c2122]

{11,12,13,15}

sc21=Join[c211,c212]

{8,9,13,11,12,15}

sc2=Join[sc21,sc22]

{8,9,13,11,12,15,16,17,19,20}

sc=Join[sc1,sc2]

{1,2,3,4,5,6,7,8,9,13,11,12,15,16,17,19,20}

2. RANDOMIZATION OF THE SORTING

ALGORITHM

In QUICKSORT algorithm, if we can choose a good

“splitter” m that breaks an array into two equal parts, we

might improve the running time. To achieve 	��	���	��

running time, it is not actually necessary to find a perfectly

equal (50/50) split. For example, a split into approximately

equal parts of size, say, 51/49 will also work. In fact, one

can prove that the algorithm will achieve 	��	���	��

running time as long as the sets csmall and clarge are both

larger in size than n/4 , which implies that, of n possible

choices for m, at least

3/4n – 1/4n = ½n

of them make good splitters. In other words, if we choose

m uniformly at random (i.e., every element of c has the

same probability to be chosen), there is at least a 50%

chance that it will be a good splitter. This observation

motivates the following randomized algorithm (Motwani,

and Raghavan 1996):

RANDOMIZEDQUICKSORT(c)

1 if c consists of a single element

2 return c

3 Choose element m uniformly at random from c

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

6 RANDOMIZEDQUICKSORT(csmall)

7 RANDOMIZEDQUICKSORT(clarge)

8 Combine csmall , m, and clarge into a single sorted array

csorted

9 return csorted

RANDOMIZEDQUICKSORT is a very fast algorithm in

practice but its worst case running time remains O(n2)

since there is still a possibility that it selects bad splitters.

Although the behavior of a randomized algorithm varies

on the same input from one execution to the next, one can

prove that its expected running time is O(n log n).

The running time of a randomized algorithm is a random

variable, and computer scientists are often interested in the

mean value of this random variable. This is referred to as

the expected running time (Floyd,and Rivest1975).

The key advantage of randomized algorithms is

performance: for many practical problems randomized

algorithms are faster in the sense of expected running time

than the best known deterministic algorithms. Another

attractive feature of randomized algorithms, as illustrated

by RANDOMIZED-QUICKSORT is their simplicity.

We emphasize that RANDOMIZEDQUICKSORT, despite

makingrandom decisions, always returns the correct

solution of the sorting problem. The only variable from

one run to another is its running time, not the result. In

contrast, other randomized algorithms we consider in this

chapter usually produce incorrect (or, more gently,

approximate) solutions. Randomized algorithms that

always return correct answers are called Las Vegas

algorithms (Lubi, 1993; Hoos, and. Stützle, 1998; Luby, et.

Al. 1993.), while algorithms that do not are called Monte

Carlo algorithms. Of course, computer scientists prefer Las

Vegas algorithms to Monte Carlo algorithms but the

former are often difficult to come by (Liu 2001). Although

for some applicationsMonte Carlo algorithms are not

appropriate (when approximate solutions are of no value),

they have been popular in different applications for over a

hundred years and often provide good approximations to

optimal solutions (Nielsen, 2009).

EXAMPLE2. A MATHEMATICA Code for

RANDOMIZEDQUICKSORT

c={13,21,19,24,14,7,15,22,23,12,3,1,10}

n=Length[c];

Divide

c1={};c2={};

m=RandomSample[c,1][[1]]

Do[If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]]]

],{i,1,n}]

c1c2

14{13,7,12,3,1,10}{21,19,24,14,15,22,23}

c=c1;

n=Length[c];

c11={};c12={};

m=RandomSample[c,1][[1]]

Do[{If[c[[i]]<m,c11=Append[c11,c[[i]]],c12=Append[c12,

c[[i]]]]},{i,1,n}]

86 M. Can, H. Lutin/ Southeast Europe Journal of Soft Computing Vol.2 No.2Sep. 2013 (83-87)

c11c12

12{7,3,1,10}{13,12}

c=c11;

n=Length[c];

c111={};c112={};

m=RandomSample[c,1][[1]]

Do[{If[c[[i]]<m,c111=Append[c111,c[[i]]],c112=Append[

c112,c[[i]]]]},{i,1,n}]

c111c112

7{3,1}{7,10}

c=c2;

n=Length[c];

c21={};c22={};

m=RandomSample[c,1][[1]];

Do[{If[c[[i]]<m,c21=Append[c21,c[[i]]],c22=Append[c22,

c[[i]]]]},{i,1,n}]

c21c22

{21,19,14,15}{24,22,23}

c=c21;

n=Length[c];

c211={};c212={};

m=RandomSample[c,1][[1]];

Do[{If[c[[i]]<m,c211=Append[c211,c[[i]]],c212=Append[

c212,c[[i]]]]},{i,1,n}]

c211c212

{14,15}{21,19}

c=c22;

n=Length[c];

c221={};c222={};

m=RandomSample[c,1][[1]];

Do[{If[c[[i]]<m,c221=Append[c221,c[[i]]],c222=Append[

c222,c[[i]]]]},{i,1,n}]

c221c222

{22,23}{24}

Concur

sc111=Reverse[c111]

{1,3}

sc11=Join[sc111,c112]

{1,3,7,10}

sc12=Reverse[c12]

{12,13}

sc1=Join[sc11,sc12]

{1,3,7,10,12,13}

sc212=Reverse[c212]

{19,21}

sc21=Join[c211,sc212]

{14,15,19,21}

sc22=Join[c221,c222]

{22,23,24}

sc2=Join[sc21,sc22]

{19,21,28,30,41,42,43,44,45,47,49}

sc2=Join[sc21,sc22]

{14,15,19,21,22,23,24}

sc=Join[sc1,sc2]

{1,3,7,10,12,13,14,15,19,21,22,23,24}

3. RANDOMIZED CUT AND MERGE SHORTENS

EXPECTED RUNNING TIME

RANDOMIZEDQUICKSORT algorithm is a divide and

concur algorithm. We realized that it is possible to develop

an algorithm that after fist partitioning does not continue

the partitioning of smaller strings, instead merges the sets

csmall and clarge. Iteration continues till to obtain the

correct sorting. The correct result is guaranteed hence this

algorithm is classified as a Las Vegas algorithm.

Here also if we can choose a good “splitter” m that breaks

an array into two equal parts, we might improve the

running time. In fact, one can prove that the algorithm will

achieve 	��	���	�� running time as long as the sets csmall

and clargeare both larger in size than n/4.This observation

motivates the following randomized algorithm:

RANDOMIZEDCAMQUICKSORT(c)

1 if c consists of a single element

2 return c

3 Choose element m uniformly at random from c

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than or equal

to m

8 Combine csmall and clarge into a single sorted array

csorted

9. If c(ı)>c(i+1), for some 1<i<n

RANDOMIZEDCAMQUICKSORT(c)

10 return csorted

87 M. Can, H. Lutin/ Southeast Europe Journal of Soft Computing Vol.2 No.2Sep. 2013 (83-87)

10 2 9 6 5 4 7 1

3

3 8 1 14 12 15

1 2 4 3 6 5 7 8 9 1

0

1

3

12 14 15

1 2 4 3 5 6 7 8 9 1

0

1

2

13 14 15

1 2 3 4 5 6 7 8 9 1

0

1

2

13 14 15

1 2 3 4 5 6 7 8 9 1

0

1

2

13 14 15

Figure 2. Implementation of

RANDOMIZEDCAMQUICK-SORT

The RANDOMIZEDCAMQUICKSORT(c) is faster than

the RANDOMIZEDQUICKSORT algorithm since it does

not need the necessary steps for a divide-and conquer

strategy. Its worst case running time is O(n) since there is a

possibility that it selects bad splitters. Although the

behavior of a randomized algorithm varies on the same

input from one execution to the next, one can prove that its

expected running time is O(n).

The key advantage of randomized algorithms is

performance: for many practical problems randomized

algorithms are faster (in the sense of expected running

time) than the best known deterministic algorithms.

Another attractive feature of rand-omized algorithms, as

illustrated by RANDOMIZEDQUICK-SORT, and

RANDOMIZEDCAMQUICKSORT algorithms, is their

simplicity.

EXAMPLE 3. A MATHEMATICA Code for

RANDOMIZEDCAMQUICKSORT(c)

c={17,3,1,39,16,2,25,5,33,19,4,38,11,23,29,13,31,6,32,18,

35,20,8,12,37,40,9,36,28,27,7,24,30}

n=Length[c];

maxiter=80;

Do[{c1={},c2={},m=RandomSample[c,1][[1]],

Do[{If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]

]]]},{i,1,n}],c=Join[c1,c2],s = 0, Do[{If[c[[i + 1]] > c[[i]],

s = s + 1]}, {i, 1, n - 1}],

 If[s == n - 1, {iter = k, ct = iter/N[n Log[2, n]],

Print["running time", " ", ct, " ", "sorted c", " ", c],

Break[]}]}, {k, 1, maxiter}]},{k,1,maxiter}]

{1,2,3,4,5,6,7,8,9,11,12,13,16,17,18,19,20,23,24,25,28,27,

29,30,31,32,33,35,36,37,38,39,40}

The running time of this randomized algorithm is also a

random variable. The mean value of this random variableis

referred as the expected running time.

For RANDOMIZEDCAMQUICKSORT(c) expected

running time is around	��	���	��.

Table 1. Expected running time of RANDOMIZEDCAM-

QUICKSORT is around	��	���	��.

n ct = iter/N[n Log[2, n]]

100 0.675593

1000 0.669025

5000 0.589887

4. CONCLUSIONS

For many practical problems randomized algorithms are

faster than the best known deterministic algorithms.

Another attractive feature of randomized algorithms, as

illustrated by RANDOMIZEDQUICKSORT, and

RANDOMIZEDCAM-QUICKSORT algorithms, is their

simplicity. For RANDOM-IZEDCAMQUICKSORT(c)

expected running time is around	��	���	��.

REFERENCES

R. W. Floyd, and R.L. Rivest (1975) Expectedtime bounds

for selection. Commun. ACM 18, pp. 165–172.

C. A. R. Hoare (1962) Quicksort, Computer Journal,

5:10–15.

H. H. Hoos, T. Stützle, (1998) Evaluating Las Vegas

algorithms: pitfalls and remedies, N Proceedings Of The

Fourteenth Conference On Uncertainty In Artificial

Intelligence (Uai-98).

N. C. Jones and P. A. Pevzner. (2004) An Introduction to

Bioinformatics Algorithms. The MIT Press.

R.M. Karp (1991)An introduction to

randomizedalgorithms, Discrete Applied Mathematics 34,

pp. 165-201.

J.S. Liu (2001) Monte Carlo strategies in scientific

computing, Harvard Univ.

M. Luby (1993) Optimal speedup of Las Vegas

algorithms, Information Processing Letters, 47, 4, pp 173–

180.

M. Luby, A. Sinclair, A., and D. Zuckerman (1993).

Optimal Speedup of Las Vegas Algorithms. Information

Processing Letters, 47:173-180.

P. Motwani, P. Raghavan (1996) Randomized

Algorithms, ACM Computing Surveys, Vol. 28, No. 1, pp.

33-37.

M. Nielsen, C. Lundegaard, P.Worningl, C. Sylvester

Hvid, K.Lamberth, S.Buus, S.Brunak, and O. Lund (2004)

, Improved prediction of MHC class I andclass II epitopes

using a novel Gibbssampling approach,

BIOINFORMATICS Vol. 20 no. 9, pages 1388–1397.

