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1. INTRODUCTION  

QUICKSORT discovered by Tony Hoare in 1962 (Hoare, 

1962;Hoos, and Stützle 1998) is a fast and simple sorting 

technique. It selects an element m(typically, the first) from 

an array c and simply partitions the array into two 

subarrays: csmall, containing all elements from c that are 

smaller than m; and clarge containing all elements la

than m. 

This partitioning can be done in linear time, and by 

following a divide-and conquer strategy, QUICKSORT 

recursively sorts each subarray in the same way. The 

sorted list is easily created by simply concatenating the 

sorted csmall, element m, and the sorted 

pseudocode is as follows (Jones, and Pevzner 2004).

 

QUICKSORT(c) 

1 if c consists of a single element 

2 return c 

3 m ← c1 

4 Determine the set of elements csmall smaller than m

5 Determine the set of elements clarge larger than m

6 QUICKSORT(csmall) 

7 QUICKSORT(clarge) 
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Abstract 
Randomized algorithms make random decisions throughout their 

operation. At first glance, making random decisions does not seem 

particularly helpful. Basing an algorithm on random decisions sounds 

like a recipe for disaster, but the fact that a randomized a

undertakes a nondeterministic sequence of operations often means that, 

unlike deterministic algorithms; no input can reliably produce worst

case results. (Karp 1991). Randomized algorithms are often used in hard 

problems where an exact, polynomial-time algorithm is not known. In 

this paper we will see how randomized algorithms solve the Sorting 

problems. 
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4 Determine the set of elements csmall smaller than m 

5 Determine the set of elements clarge larger than m 

 

8 Combine csmall , m, and clarge into a single sorted array 

csorted 

9 return csorted 

It turns out that the running time of QUICKSORT depends 

on how lucky we are with our selection of the element 

If we happen to choose m in such a way that 

even halves (i.e., |csmall| = |clarge|), then
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It leads to 	���� running time, something we want to 

avoid. Indeed, QUICKSORT takes quadratic time to sort 
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Figure 1. Implementation of QUICKSORT 

 

EXAMPLE 1. A MATHEMATICA Code for  

QUICKSORT 

c= {18,14,15,5,20,11,4,1,6,7,10,2,19,16,13,9} 

n=Length[c]; 

 

Divide 

c1={}; c2={}; 

m=First[c] 

Do[{If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]

]]]},{i,1,n}] 

c1 c2 

8 {6,5,1,2,7,3,4} {8,13,16,11,20,12,19,17,15,9} 

*** 

c=c1; 

n=Length[c]; 

c11={}; c12={}; 

m=First[c] 

Do[{If[c[[i]]<m,c11=Append[c11,c[[i]]],c12=Append[c12,

c[[i]]]]},{i,1,n}] 

c11 c12 

6 {5,1,2,3,4} {6,7} 

*** 

c=c11; 

n=Length[c]; 

c111={}; c112={}; 

m=First[c] 

Do[{If[c[[i]]<m,c111=Append[c111,c[[i]]],c112=Append[

c112,c[[i]]]]},{i,1,n}] 

c111 c112 

5 {1,2,3,4} {5} 

*** 

c=c2; 

n=Length[c]; 

c21={}; c22={}; 

m=Take[c,{3}][[1]]; 

Do[{If[c[[i]]<m,c21=Append[c21,c[[i]]],c22=Append[c22,

c[[i]]]]},{i,1,n}] 

c21 c22 

16 {8,13,11,12,15,9} {16,20,19,17} 

*** 

c=c21; 

n=Length[c]; 

c211={}; c212={}; 

m=Take[c,{3}][[1]] 

Do[{If[c[[i]]<m,c211=Append[c211,c[[i]]],c212=Append[

c212,c[[i]]]]},{i,1,n}] 

c211 c212 

11 {8,9} {13,11,12,15} 

*** 

c=c212; 

n=Length[c]; 

c2121={}; c2122={}; 

m=First[c] 

Do[{If[c[[i]]<m,c2121=Append[c2121,c[[i]]],c2122=Appe

nd[c2122,c[[i]]]]},{i,1,n}] 

c2121 c2122 

13 {11,12} {13,15} 

*** 

c=c22; 

n=Length[c]; 

c221={}; c222={}; 

m=Take[c,{3}][[1]] 

Do[{If[c[[i]]<m,c221=Append[c221,c[[i]]],c222=Append[

c222,c[[i]]]]},{i,1,n}] 

c221 c222 

19 {16,17} {20,19} 

Concur 

sc11=Join[c111,c112] 

{1,2,3,4,5} 
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sc1=Join[sc11,c12] 

{1,2,3,4,5,6,7} 

c222=Reverse[c222] 

{19,20} 

sc22=Join[c221,c222] 

{16,17,19,20} 

sc212=Join[c2121,c2122] 

{11,12,13,15} 

sc21=Join[c211,c212] 

{8,9,13,11,12,15} 

 

sc2=Join[sc21,sc22] 

{8,9,13,11,12,15,16,17,19,20} 

 

sc=Join[sc1,sc2] 

{1,2,3,4,5,6,7,8,9,13,11,12,15,16,17,19,20} 

 

2. RANDOMIZATION OF THE SORTING      

ALGORITHM 

In QUICKSORT algorithm, if we can choose a good 

“splitter” m that breaks an array into two equal parts, we 

might improve the running time. To achieve 	��	���	�� 

running time, it is not actually necessary to find a perfectly 

equal (50/50) split. For example, a split into approximately 

equal parts of size, say, 51/49 will also work. In fact, one 

can prove that the algorithm will achieve 	��	���	�� 

running time as long as the sets csmall and clarge are both 

larger in size than n/4 , which implies that, of n possible 

choices for m, at least 

3/4n – 1/4n = ½n  

of them make good splitters. In other words, if we choose 

m uniformly at random (i.e., every element of c has the 

same probability to be chosen), there is at least a 50% 

chance that it will be a good splitter. This observation 

motivates the following randomized algorithm (Motwani, 

and Raghavan 1996): 

RANDOMIZEDQUICKSORT(c) 

1 if c consists of a single element 

2 return c 

3 Choose element m uniformly at random from c 

4 Determine the set of elements csmall smaller than m 

5 Determine the set of elements clarge larger than m 

6 RANDOMIZEDQUICKSORT(csmall) 

7 RANDOMIZEDQUICKSORT(clarge) 

8 Combine csmall , m, and clarge into a single sorted array 

csorted 

9 return csorted 

RANDOMIZEDQUICKSORT is a very fast algorithm in 

practice but its worst case running time remains O(n2) 

since there is still a possibility that it selects bad splitters. 

Although the behavior of a randomized algorithm varies 

on the same input from one execution to the next, one can 

prove that its expected running time is O(n log n). 

The running time of a randomized algorithm is a random 

variable, and computer scientists are often interested in the 

mean value of this random variable. This is referred to as 

the expected running time (Floyd,and Rivest1975). 

The key advantage of randomized algorithms is 

performance: for many practical problems randomized 

algorithms are faster in the sense of expected running time 

than the best known deterministic algorithms. Another 

attractive feature of randomized algorithms, as illustrated 

by RANDOMIZED-QUICKSORT is their simplicity. 

We emphasize that RANDOMIZEDQUICKSORT, despite 

makingrandom decisions, always returns the correct 

solution of the sorting problem. The only variable from 

one run to another is its running time, not the result. In 

contrast, other randomized algorithms we consider in this 

chapter usually produce incorrect (or, more gently, 

approximate) solutions. Randomized algorithms that 

always return correct answers are called Las Vegas 

algorithms (Lubi, 1993; Hoos, and. Stützle, 1998; Luby, et. 

Al. 1993.), while algorithms that do not are called Monte 

Carlo algorithms. Of course, computer scientists prefer Las 

Vegas algorithms to Monte Carlo algorithms but the 

former are often difficult to come by (Liu 2001). Although 

for some applicationsMonte Carlo algorithms are not 

appropriate (when approximate solutions are of no value), 

they have been popular in different applications for over a 

hundred years and often provide good approximations to 

optimal solutions (Nielsen, 2009). 

 

EXAMPLE2. A MATHEMATICA Code for 

RANDOMIZEDQUICKSORT 

 

c={13,21,19,24,14,7,15,22,23,12,3,1,10} 

n=Length[c]; 

 

 

Divide 

c1={};c2={}; 

m=RandomSample[c,1][[1]] 

Do[If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]]]

],{i,1,n}] 

c1c2 

14{13,7,12,3,1,10}{21,19,24,14,15,22,23} 

*** 

c=c1; 

n=Length[c]; 

c11={};c12={}; 

m=RandomSample[c,1][[1]] 

Do[{If[c[[i]]<m,c11=Append[c11,c[[i]]],c12=Append[c12,

c[[i]]]]},{i,1,n}] 
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c11c12 

12{7,3,1,10}{13,12} 

*** 

c=c11; 

n=Length[c]; 

c111={};c112={}; 

m=RandomSample[c,1][[1]] 

Do[{If[c[[i]]<m,c111=Append[c111,c[[i]]],c112=Append[

c112,c[[i]]]]},{i,1,n}] 

c111c112 

7{3,1}{7,10} 

*** 

c=c2; 

n=Length[c]; 

c21={};c22={}; 

m=RandomSample[c,1][[1]]; 

Do[{If[c[[i]]<m,c21=Append[c21,c[[i]]],c22=Append[c22,

c[[i]]]]},{i,1,n}] 

c21c22 

{21,19,14,15}{24,22,23} 

*** 

c=c21; 

n=Length[c]; 

c211={};c212={}; 

m=RandomSample[c,1][[1]]; 

Do[{If[c[[i]]<m,c211=Append[c211,c[[i]]],c212=Append[

c212,c[[i]]]]},{i,1,n}] 

c211c212 

{14,15}{21,19} 

*** 

c=c22; 

n=Length[c]; 

c221={};c222={}; 

m=RandomSample[c,1][[1]]; 

Do[{If[c[[i]]<m,c221=Append[c221,c[[i]]],c222=Append[

c222,c[[i]]]]},{i,1,n}] 

c221c222 

{22,23}{24} 

 

 

Concur 

sc111=Reverse[c111] 

{1,3} 

sc11=Join[sc111,c112] 

{1,3,7,10} 

sc12=Reverse[c12] 

{12,13} 

sc1=Join[sc11,sc12] 

{1,3,7,10,12,13} 

 

 

sc212=Reverse[c212] 

{19,21} 

sc21=Join[c211,sc212] 

{14,15,19,21} 

 

sc22=Join[c221,c222] 

{22,23,24} 

 

sc2=Join[sc21,sc22] 

{19,21,28,30,41,42,43,44,45,47,49} 

 

sc2=Join[sc21,sc22] 

{14,15,19,21,22,23,24} 

 

sc=Join[sc1,sc2] 

{1,3,7,10,12,13,14,15,19,21,22,23,24} 

 

3. RANDOMIZED CUT AND MERGE SHORTENS  

EXPECTED RUNNING TIME      

RANDOMIZEDQUICKSORT algorithm is a divide and 

concur algorithm. We realized that it is possible to develop 

an algorithm that after fist partitioning does not continue 

the partitioning of smaller strings, instead merges the sets 

csmall and clarge. Iteration continues till to obtain the 

correct sorting. The correct result is guaranteed hence this 

algorithm is classified as a Las Vegas algorithm. 

Here also if we can choose a good “splitter” m that breaks 

an array into two equal parts, we might improve the 

running time. In fact, one can prove that the algorithm will 

achieve 	��	���	�� running time as long as the sets csmall 

and clargeare both larger in size than n/4.This observation 

motivates the following randomized algorithm: 

RANDOMIZEDCAMQUICKSORT(c) 

1 if c consists of a single element 

2 return c 

3 Choose element m uniformly at random from c 

4 Determine the set of elements csmall smaller than m 

5 Determine the set of elements clarge larger than or equal 

to m 

8 Combine csmall and clarge into a single sorted array 

csorted 

9. If c(ı)>c(i+1), for some 1<i<n 

RANDOMIZEDCAMQUICKSORT(c) 

10 return csorted 
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Figure 2. Implementation of 

RANDOMIZEDCAMQUICK-SORT 

The RANDOMIZEDCAMQUICKSORT(c) is faster than 

the RANDOMIZEDQUICKSORT algorithm since it does 

not need the necessary steps for a divide-and conquer 

strategy. Its worst case running time is O(n) since there is a 

possibility that it selects bad splitters. Although the 

behavior of a randomized algorithm varies on the same 

input from one execution to the next, one can prove that its 

expected running time is O(n). 

The key advantage of randomized algorithms is 

performance: for many practical problems randomized 

algorithms are faster (in the sense of expected running 

time) than the best known deterministic algorithms. 

Another attractive feature of rand-omized algorithms, as 

illustrated by RANDOMIZEDQUICK-SORT, and 

RANDOMIZEDCAMQUICKSORT algorithms, is their 

simplicity. 

 

EXAMPLE 3. A MATHEMATICA Code for 

RANDOMIZEDCAMQUICKSORT(c) 

c={17,3,1,39,16,2,25,5,33,19,4,38,11,23,29,13,31,6,32,18,

35,20,8,12,37,40,9,36,28,27,7,24,30} 

n=Length[c]; 

maxiter=80; 

Do[{c1={},c2={},m=RandomSample[c,1][[1]], 

Do[{If[c[[i]]<m,c1=Append[c1,c[[i]]],c2=Append[c2,c[[i]

]]]},{i,1,n}],c=Join[c1,c2],s = 0, Do[{If[c[[i + 1]] > c[[i]], 

s = s + 1]}, {i, 1, n - 1}],  

  If[s == n - 1, {iter = k, ct = iter/N[n Log[2, n]],  

Print["running time", " ", ct, " ", "sorted c", "  ", c],  

Break[]}]}, {k, 1, maxiter}]},{k,1,maxiter}] 

{1,2,3,4,5,6,7,8,9,11,12,13,16,17,18,19,20,23,24,25,28,27,

29,30,31,32,33,35,36,37,38,39,40} 

 

The running time of this randomized algorithm is also a 

random variable. The mean value of this random variableis 

referred as the expected running time.  

For RANDOMIZEDCAMQUICKSORT(c) expected 

running time  is around	��	���	��.  

Table 1. Expected running time of RANDOMIZEDCAM-

QUICKSORT is around	��	���	��. 

n ct = iter/N[n Log[2, n]] 

100 0.675593 

1000 0.669025 

5000 0.589887 

 

 

4. CONCLUSIONS 

For many practical problems randomized algorithms are 

faster than the best known deterministic algorithms. 

Another attractive feature of randomized algorithms, as 

illustrated by RANDOMIZEDQUICKSORT, and 

RANDOMIZEDCAM-QUICKSORT algorithms, is their 

simplicity. For RANDOM-IZEDCAMQUICKSORT(c) 

expected running time  is around	��	���	��.  
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