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Abstract 
In this paper we give one new proposal in finding optimal triangulation 
which is based on our authorial method for generating triangulation 
(Block method). We present two cases in calculation the triangulation 
weights (classical case and case based on block method). We also provide 
their equality and established relationship in calculation the weights for 
both models, with an emphasis on simplicity of calculations which occurs 
in the second case. The main goal of this paper is on the speed of 
obtaining optimal triangulation. 
 
 
 

1. INTRODUCTION AND PRELIMINARES  

Polygon triangulation is an important problem 
applicable in computer graphics. One of the topics in the 
field of triangulation is optimal triangulation. Many authors 
deals with the problem how to find the optimum 
triangulation of a convex polygon based on some criterion, 
eg a triangulation which minimizes the perimeters of the 
component triangles ( value of: perimeter, sum of heights, 
length of the longest median and etc. [1]).  

For example, the triangulation that has minimum total 
length of its edges is known in the literature as Minimum 
Weight Triangulation (MWT). Because of the difficulty of 
finding the exact solutions of MWT, many authors have 
studied heuristics that may in some cases find the solution 
although they cannot be proven to work in all cases. In 
particular, much of this research has focused on the 
problem of finding sets of edges that are guaranteed to 
belong to the minimum-weight triangulation. This is by far 
the most studied problem in the area of optimal 
triangulations [2,3,4,5,6,7]. 

Some other approaches in finding optimal triangulation 
are: MinMax and MaxMin [8], Edge-insertion paradigm [9], 
Subgraph Scheme [10] and etc.  

In this paper we give proposal how to find optimal 
triangulation based on our authorial method for generating 
triangulation [11].  

Since our method works with database the main goal of 
our proposal is to use recorded data (in this case internal 
diagonals) to obtain optimal triangulation. Discussion in 
finding optimal triangulation using internal diagonals is 
given in section 3. In section 4 we provide experimental 
results and comparative analysis. 

Before all here we give some basic information about 
generating triangulation. Polygon triangulation implies 
decomposition of the interior of the polygon to triangles, 
with non-transversing internal diagonals. 

The total number of all triangulations 𝑇𝑛 of n-gon is 
given in the following equation: 

 

𝑇𝑛 = 1
𝑛−1

�2𝑛 − 4
𝑛 − 2 � = (2𝑛−4)!

(𝑛−1)!(𝑛−2)!
;𝑛 ≥ 3        (1) 
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According to our Block method [11] the number of 
triangulations 𝑇𝑛 is expressed with following equation: 

𝑇𝑛 = 2𝑇𝑛−1 +  𝑟𝑒𝑠𝑡(𝑅𝑛)                          (2)  
where 𝑇𝑛−1 is number of triangulation for polygon of 
𝑛 − 1 vertices, and  𝑟𝑒𝑠𝑡(𝑅𝑛) are new triangulations that 
are not appear in the block. 

2. ALGORITHM OF BLOCK METHOD 

Block method is based on the recognition of polygon 
triangulation with smaller number of vertices (blocks) in a 
set of vertices corresponding to the polygon with larger 
number of vertices. More specifically, this method is based 
on the usage of already established triangulation stored in 
the form of internal diagonals.  

The advantage of the Block method is in usage of 
already obtained triangulation for the (n-1) polygon in 
obtaining triangulation for larger polygons, while for the 
rest is to find remaining internal diagonals. The term block 
represent all triangulation for a given (n-1) polygon which 
appears twice in its entirety in a set of triangulation for n-
polygon. In this way, it avoids to re-generate the same 
triangulation (a technique of recursion with memoization). 

The algorithm which realizes Block method can be 
divided into four phases: 

1. In the first phase of this method, all records of 
the triangulation of smaller polygon are 
transposed  
(step 1. in Algorithm 4. in paper [11]).  

2. In second phase, transposed records of (n-1) 
polygon are recorded in temporary database 
where is planned to store records of n-polygon 
triangulation (step 2).  

3. In the next phase on the all records are added 
one additional record for another internal 
diagonal  
(step 3). In this step we call algorithm that is 
responsible for finding the remaining allowed 
vertices which also call additional algorithm to 
eliminate all prohibited (closed) vertices 
(definition for prohibited vertex is given in the 
paper [11]). 

4. In the last phase of the Block method we find all 
remaining triangulations which have at least two 
internal diagonals that contain last vertex n (step 
4.1). In this segment we call once again 
additional algorithm in order to find the 
remaining allowed vertices (step 4.2). 

Since the Block method works with databases here we 
recall some details of storage: (1) All results for blocks 
(base) are recorded in the .db format; (2) Each block is 
recorded in the form [Tn_base].db; (3) Database contains a 
set of internal diagonals for each line individually, which 
defines a triangulation of the polygon. 

Original schema of Block method is given on the 
following picture. 

 
Figure 1. Generating triangulation based on Block method 

 

3. CALCULATION OF OPTIMAL TRIANGULATION 
AND APPLICATION OF BLOCK METHOD 

The base of all triangulation is triangle, so here we 
discuss how to find perimeter of triangle (P), as one of the 
measure in finding optimal triangulation. 

 
PΔ𝐴𝐵𝐶 = 𝑎 + 𝑏 + 𝑐 

Before calculating perimeter for all triangles first we 
have to obtain distance between two vertex (length of the 
sides) using following equation: 

𝑑 = �(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2 

Note: Every point in the plane is defined by the 
coordinates 𝑥,𝑦. 
 

In the procedure of finding the optimal triangulation is 
used total sum of perimeter of triangles, expressed in 
weights (W) which define one triangulation. 
 

𝑊𝑛 = �𝑃(𝑇𝑛) 
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3.1 CASE WITH CLASSICAL CALCULATION OF 
TRIANGULATION WEIGHT 
 

For the case of classical calculation of optimal 
triangulation we will take example of convex pentagon 
which has 5 different triangulations (based on equation 
(1)).  
 
Example 1. Finding optimal triangulation via classical 
calculation of perimeter: 
 

 
Figure 2. All combination of the pentagon triangulations 

 

W1 (T5) = P∆123+P∆134+P∆145= 
        
 =(9+5+11.51)+(11.51+7.5+11.96)+(11.96+6.5+8)
= 
         =25.51+30.97+26.46=82.94 

W2 (T5) = P∆123+P∆135+P∆345= 
        
 =(9+5+11.51)+(11.51+11.32+8)+(11.32+7.5+6.5)
= 
         =25.51+30.83+25.32=81.66 

W3 (T5) = P∆145+P∆124+P∆234=  
   
 =(11.96+6.5+8)+(9+11.10+11.96)+(5+7.5+11.10)
= 
     =26.46+32.06+23.6=82.12 
 
W4 (T5) = P∆125+P∆245+P∆234=  
        
 =(8+9+12.41)+(12.41+11.10+6.5)+(11.10+5+7.5)
= 
         =29.41+30.01+23.6=83.02 
 
W5 (T5) = P∆125+P∆235+P∆345=      
       
 =(8+9+12.41)+(5+11.32+12.41)+(11.32+6.5+7.5)
= 
        =29.41+28.73+25.32=83.46 
 

After calculation weights of all triangulation we find 
minimal (optimal) weight, as follows:  

min W(T5)= min(82.94; 81.66; 82.12; 83.02; 83.46) 
min W(T5)= W2 (T5)=81.66 
 

In this case optimal triangulation is defined with 
following triangles:  ∆(1,2,3); ∆(1,3,5); ∆(3,4,5). 

 

3.2 CASE WITH CALCULATION OF 
TRIANGULATION WEIGHT BASED ON BLOCK 
METHOD 
 

Before calculation here we give some properties of 
our proposal: 

− Because the outer sides are the same for all 
combinations of a given polygon triangulation we 
exclude their calculation because it does not 
affect the final result; 

− Considering that only the internal diagonals are 
different and that they determine the 
uniqueness of the final result, we give proposal 
to use only them in finding optimal triangulation. 

 
Example 2. Proposed scenario based on block method for 
the given polygon 𝑇5. 

1. Reading blocks of the pentagon (𝑇5) from the 
database 
 

i D1 D2 

1 1,3 1,4 

2 1,3 2,5 

3 2,4 1,4 

4 2,4 2,5 

5 2,5 3,5 

 
2. Updating table with new column for storing sum of 

length of the internal diagonals (𝐿𝑖𝑛𝑡) for each line 
(denoted with S). 

𝑆 = �𝐿𝑖𝑛𝑡 

 
i D1 D2 S 

1 1,3 1,4  

2 1,3 2,5  

3 2,4 1,4  
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4 2,4 2,5  

5 2,5 3,5  

 
3. Calculating distance between vertices and their 

length for each line individually, which defines a 
triangulation of the polygon 

− Calculating distance  
− Calculating length of the internal diagonals and 

their sum 
 

4. Updating table with all data 
 

i D1 D2 S 

1 1,3 1,4 23.47 

2 1,3 2,5 22.83 

3 2,4 1,4 23.06 

4 2,4 2,5 23.51 

5 2,5 3,5 23.73 

 
5. Determining optimal triangulation based on all data 

from the table 
− Finding minimal value of the last column 

min(S) 

After obtaining weights for all triangulation, we find 
minimal one (optimal), as follows: 

 
min S(T5)= min(23,47; 22,83; 23,06; 23,51; 23,73) 
min (S)= 22.83 

In this case optimal triangulation is determined with 
following internal diagonals: D1(1,3); D2(2,5).   

More precisely, if we express the same triangulation 
via triangles ∆(1,2,3); ∆(1,3,5); ∆(3,4,5), we get the same 
optimal triangulation as in Example 1.  

Conclusion is that we get the same result in both 
cases, only that in second case we calculate with less data 
which is reflected in the simplicity of the proposed 
method. 

 

3.3 EQUALITY OF CASE 1 AND CASE 2 

If we observe the method of calculating in the 
Example 1, is noted that in the calculating set of 
perimeters of triangles (weights) in one triangulation, 
every internal diagonal is always used twice.  

If we eliminate length of outer diagonals (𝐿𝑜𝑢𝑡) of 
given polygon we do not disturb the unity of calculating 

triangulation weight. Further elimination in the sum of the 
lengths of internal diagonals which appears twice, we 
obtain the same value as in Example 2 (table in step 4). 

Procedure of elimination is given in following 
equation: 

 
( 𝑊 (𝑇𝑛) −  ∑𝐿𝑜𝑢𝑡 )/2 = S             (3) 

 

Applying equation (3) on concrete example for the 
Case 1 and Case 2 is given below: 

1: (82,94-36)/2=23,47 

2: (81,66-36)/2=22,83 

3: (82,12-36)/2=23,06 

4: (83,02-36)/2=23,51 

5: (83,46-36)/2=23,73 

 

4. EXPERIMENTAL RESULTS AND COMPARATIVE 
ANALYSIS  

In this section are specified testing results in finding 
optimal triangulation through two algorithms. Considering 
that our method relies on finding optimal triangulation 
from the set of all generated triangulation, for the purposes 
of comparative analysis we selected Hurtado-Noy 
algorithm (more about this algorithm you can see in the 
paper [12], and details of the implementation in [13]).  

Details and experimental results for Block method 
(which are partially taken in table 1) can be found in paper 
[13]. 

Table 1: Execution times for Block method and time for 
finding optimal triangulation (in seconds) 

n Number of 
triangulation Block method Optimal 

triangulation 

5 5 0.16 0 
6 14 0.26 0.01 
7 42 0.34 0.02 
8 132 0.41 0.03 
9 429 0.46 0.05 

10 1,430 0.54 0.08 
11 4,862 0.85 0.14 
12 16,796 1.32 0.21 
13 58,786 4.4 0.34 
14 208,012 24.13 0.59 
15 742,900 85.3 1.07 
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Table 2: Execution times for Hurtado-Noy algorithm and 
time for finding the optimal triangulation (in seconds) 

n Number of 
triangulation Hurtado-Noy  Optimal 

triangulation 

5 5 0.19 0 
6 14 0.34 0.01 
7 42 0.42 0.03 
8 132 0.49 0.05 
9 429 0.67 0.07 

10 1,430 1.18 0.11 
11 4,862 3.81 0.21 
12 16,796 12.46 0.34 
13 58,786 43.51 0.58 
14 208,012 119.05 0.79 
15 742,900 318.63 2.75 

 

Table 3: The total execution time for two algorithms and 
speedup 

n Optimal triangulation 
based on Block method 

Optimal triangulation 
based on Hurtado-Noy Speedup 

5 0.16 0.19 1.19 
6 0.27 0.35 1.30 
7 0.36 0.45 1.25 
8 0.44 0.54 1.23 
9 0.51 0.74 1.45 

10 0.62 1.29 2.08 
11 0.99 4.02 4.06 
12 1.53 12.8 8.37 
13 4.74 44.09 9.30 
14 24.72 119.84 4.85 
15 86.37 321.38 3.72 

 

The testing is performed in NetBeans testing module 
“Profile Main Project / CPU Analyze Performanse” in 
configuration*: CPU - Intel(R) Core(TM)2Duo CPU, 
T7700, 2.40 GHz, L2 Cache 4 MB (On-Die,ATC,Full-
Speed), RAM Memory - 2 Gb, Graphic card - NVIDIA 
GeForce 8600M GS. 

5.  CONCLUSIONS 

The significance of the presented method is reflected 
in the fact that using the recorded values can be a very 
effective way to find the optimal triangulation. That means 
in finding allowed triangulation (combination of internal 
diagonals which do not intersect) directly is recorded 
values for vertices and their weight. This is suitable for 
fast drawing the optimal triangulation of irregular convex 
polygon. 

 

REFERENCES  

[1] Keil M.J., Vassilev T.S. (2006) “Algorithms for optimal area 
triangulations of a convex polygon”, Computational Geometry, 
Vol. 35:173-187. 

[2] Anagnostou E. and Corneil D. (1993) “Polynomial-time 
instances of the minimum weight triangulation problem”, 
Computational Geometry: Theory and Applications, 3:247–259.  
 
[3] Beirouti R. and Snoeyink J. (1998) “Implementations of the 
LMT heuristic for minimum weight triangulation” In Proceedings 
of the 14th Annual ACM Symposium on Computational Geometry, 
pp 96–105. 
 
[4] Belleville P., Keil M., McAllister M. and Snoeyink J. (1996) 
“On computing edges that are in all minimum–weight 
triangulations”, In Proceedings of the 12th Annual ACM 
Symposium on Computational Geometry, pp. V7–V8.  
[5] Dickerson M. T., Keil J. M. and Montague M. H. (1997) “A 
large subgraph of the minimum weight triangulation”, Discrete 
and Computational Geometry, 18:289–304. 
 
[6] Drysdale R. L., McElfresh S. and Snoeyink J. S. (2001) “On 
exclusion regions for optimal triangulations”, Discrete Applied 
Mathematics, 109:49–65. 
 
[7] Heath L. S. and Pemmaraju S. V. (1994) “New results for the 
minimum weight triangulation problem”, Agorithmica, 12:533–
552, 
 
[8] Keil M.J., Vassilev T.S. (2003) “An algorithm for the MaxMin 
area triangulation of a convex polygon”, In Proceeding of the 15th 
Canadian Conference on Computational Geometry, pp. 145-149. 
 
[9] Bern M., Edelsbrunner H., Eppstein D., Mitchell S., Tan T.S. 
(1993) “Edge Insertion for Optimal Triangulations”, Discrete and 
Computational Geometry 10 (1): 47–65, 
doi:10.1007/BF02573962, MR 1215322 
 
[10] Keil M. J. (1994) “Computing a subgraph of the minimum 
weight triangulation”, Computational Geometry. pp. 413–26 
 
[11] Stanimirovic P, Krtolica P, Saracevic M, Masovic S (2012) 
“Block Method for Convex Polygon Triangulation”, Romanian 
Journal of Information Science and Technology - ROMJIST,  
Vol.15, No.4:344-354 
 
[12] Hurtado F. and Noy M.: Graph of Triangulations of a 
Convex Polygon and tree of triangulations, Comput. Geom. 13 
(1999), 179–188. 
 
[13] Saracevic M., Stanimirovic P.S., Masovic S. and Bisevac E., 
Implementation of the convex polygon triangulation algorithm, 
Facta Universitatis, series: Mathematics and Informatics, Vol. 27, 
pp. 213–228, 2012. 


