

Southeast Europe Journal of Soft Computing

Available online: www.scjournal.com.ba

VOL.3 NO.2September 2014 - ISSN 2233 – 1859

FINDING OPTIMAL TRIANGULATION BASED ON
BLOCK METHOD

Sead H. Mašović1, Muzafer H. Saračević2

1Faculty of Science and Mathematics, University of Nis, Višegradska 33, Niš, Serbia, sead.masovic@pmf.edu.rs
2Department of Computer science, University of Novi Pazar, Dimitrija Tucovića, Serbia, muzafers@uninp.edu.rs

Article Info
Article history:
Received June 2014
Received in revised form Nov 2014

Keywords:
Computational geometry, Computer
graphic, Optimal triangulation, Block
method

Abstract
In this paper we give one new proposal in finding optimal triangulation
which is based on our authorial method for generating triangulation
(Block method). We present two cases in calculation the triangulation
weights (classical case and case based on block method). We also provide
their equality and established relationship in calculation the weights for
both models, with an emphasis on simplicity of calculations which occurs
in the second case. The main goal of this paper is on the speed of
obtaining optimal triangulation.

1. INTRODUCTION AND PRELIMINARES

Polygon triangulation is an important problem
applicable in computer graphics. One of the topics in the
field of triangulation is optimal triangulation. Many authors
deals with the problem how to find the optimum
triangulation of a convex polygon based on some criterion,
eg a triangulation which minimizes the perimeters of the
component triangles (value of: perimeter, sum of heights,
length of the longest median and etc. [1]).

For example, the triangulation that has minimum total
length of its edges is known in the literature as Minimum
Weight Triangulation (MWT). Because of the difficulty of
finding the exact solutions of MWT, many authors have
studied heuristics that may in some cases find the solution
although they cannot be proven to work in all cases. In
particular, much of this research has focused on the
problem of finding sets of edges that are guaranteed to
belong to the minimum-weight triangulation. This is by far
the most studied problem in the area of optimal
triangulations [2,3,4,5,6,7].

Some other approaches in finding optimal triangulation
are: MinMax and MaxMin [8], Edge-insertion paradigm [9],
Subgraph Scheme [10] and etc.

In this paper we give proposal how to find optimal
triangulation based on our authorial method for generating
triangulation [11].

Since our method works with database the main goal of
our proposal is to use recorded data (in this case internal
diagonals) to obtain optimal triangulation. Discussion in
finding optimal triangulation using internal diagonals is
given in section 3. In section 4 we provide experimental
results and comparative analysis.

Before all here we give some basic information about
generating triangulation. Polygon triangulation implies
decomposition of the interior of the polygon to triangles,
with non-transversing internal diagonals.

The total number of all triangulations 𝑇𝑛 of n-gon is
given in the following equation:

𝑇𝑛 = 1
𝑛−1

�2𝑛 − 4
𝑛 − 2 � = (2𝑛−4)!

(𝑛−1)!(𝑛−2)!
;𝑛 ≥ 3 (1)

http://www.scjournal.com.ba/
mailto:sead.masovic@pmf.edu.rs
mailto:muzafers@uninp.edu.rs

15 S.H. Masovic & M. H. Saracevic/ Southeast Europe Journal of Soft Computing Vol.3 No.2Sep. 2014 (14-18)

According to our Block method [11] the number of
triangulations 𝑇𝑛 is expressed with following equation:

𝑇𝑛 = 2𝑇𝑛−1 + 𝑟𝑒𝑠𝑡(𝑅𝑛) (2)
where 𝑇𝑛−1 is number of triangulation for polygon of
𝑛 − 1 vertices, and 𝑟𝑒𝑠𝑡(𝑅𝑛) are new triangulations that
are not appear in the block.

2. ALGORITHM OF BLOCK METHOD

Block method is based on the recognition of polygon
triangulation with smaller number of vertices (blocks) in a
set of vertices corresponding to the polygon with larger
number of vertices. More specifically, this method is based
on the usage of already established triangulation stored in
the form of internal diagonals.

The advantage of the Block method is in usage of
already obtained triangulation for the (n-1) polygon in
obtaining triangulation for larger polygons, while for the
rest is to find remaining internal diagonals. The term block
represent all triangulation for a given (n-1) polygon which
appears twice in its entirety in a set of triangulation for n-
polygon. In this way, it avoids to re-generate the same
triangulation (a technique of recursion with memoization).

The algorithm which realizes Block method can be
divided into four phases:

1. In the first phase of this method, all records of
the triangulation of smaller polygon are
transposed
(step 1. in Algorithm 4. in paper [11]).

2. In second phase, transposed records of (n-1)
polygon are recorded in temporary database
where is planned to store records of n-polygon
triangulation (step 2).

3. In the next phase on the all records are added
one additional record for another internal
diagonal
(step 3). In this step we call algorithm that is
responsible for finding the remaining allowed
vertices which also call additional algorithm to
eliminate all prohibited (closed) vertices
(definition for prohibited vertex is given in the
paper [11]).

4. In the last phase of the Block method we find all
remaining triangulations which have at least two
internal diagonals that contain last vertex n (step
4.1). In this segment we call once again
additional algorithm in order to find the
remaining allowed vertices (step 4.2).

Since the Block method works with databases here we
recall some details of storage: (1) All results for blocks
(base) are recorded in the .db format; (2) Each block is
recorded in the form [Tn_base].db; (3) Database contains a
set of internal diagonals for each line individually, which
defines a triangulation of the polygon.

Original schema of Block method is given on the
following picture.

Figure 1. Generating triangulation based on Block method

3. CALCULATION OF OPTIMAL TRIANGULATION
AND APPLICATION OF BLOCK METHOD

The base of all triangulation is triangle, so here we
discuss how to find perimeter of triangle (P), as one of the
measure in finding optimal triangulation.

PΔ𝐴𝐵𝐶 = 𝑎 + 𝑏 + 𝑐

Before calculating perimeter for all triangles first we
have to obtain distance between two vertex (length of the
sides) using following equation:

𝑑 = �(𝑥𝐴 − 𝑥𝐵)2 + (𝑦𝐴 − 𝑦𝐵)2

Note: Every point in the plane is defined by the
coordinates 𝑥,𝑦.

In the procedure of finding the optimal triangulation is
used total sum of perimeter of triangles, expressed in
weights (W) which define one triangulation.

𝑊𝑛 = �𝑃(𝑇𝑛)

16 S.H. Masovic & M. H. Saracevic/ Southeast Europe Journal of Soft Computing Vol.3 No.2Sep. 2014 (14-18)

3.1 CASE WITH CLASSICAL CALCULATION OF
TRIANGULATION WEIGHT

For the case of classical calculation of optimal
triangulation we will take example of convex pentagon
which has 5 different triangulations (based on equation
(1)).

Example 1. Finding optimal triangulation via classical
calculation of perimeter:

Figure 2. All combination of the pentagon triangulations

W1 (T5) = P∆123+P∆134+P∆145=

 =(9+5+11.51)+(11.51+7.5+11.96)+(11.96+6.5+8)
=
 =25.51+30.97+26.46=82.94

W2 (T5) = P∆123+P∆135+P∆345=

 =(9+5+11.51)+(11.51+11.32+8)+(11.32+7.5+6.5)
=
 =25.51+30.83+25.32=81.66

W3 (T5) = P∆145+P∆124+P∆234=

 =(11.96+6.5+8)+(9+11.10+11.96)+(5+7.5+11.10)
=
 =26.46+32.06+23.6=82.12

W4 (T5) = P∆125+P∆245+P∆234=

 =(8+9+12.41)+(12.41+11.10+6.5)+(11.10+5+7.5)
=
 =29.41+30.01+23.6=83.02

W5 (T5) = P∆125+P∆235+P∆345=

 =(8+9+12.41)+(5+11.32+12.41)+(11.32+6.5+7.5)
=
 =29.41+28.73+25.32=83.46

After calculation weights of all triangulation we find
minimal (optimal) weight, as follows:

min W(T5)= min(82.94; 81.66; 82.12; 83.02; 83.46)
min W(T5)= W2 (T5)=81.66

In this case optimal triangulation is defined with
following triangles: ∆(1,2,3); ∆(1,3,5); ∆(3,4,5).

3.2 CASE WITH CALCULATION OF
TRIANGULATION WEIGHT BASED ON BLOCK
METHOD

Before calculation here we give some properties of
our proposal:

− Because the outer sides are the same for all
combinations of a given polygon triangulation we
exclude their calculation because it does not
affect the final result;

− Considering that only the internal diagonals are
different and that they determine the
uniqueness of the final result, we give proposal
to use only them in finding optimal triangulation.

Example 2. Proposed scenario based on block method for
the given polygon 𝑇5.

1. Reading blocks of the pentagon (𝑇5) from the
database

i D1 D2

1 1,3 1,4

2 1,3 2,5

3 2,4 1,4

4 2,4 2,5

5 2,5 3,5

2. Updating table with new column for storing sum of

length of the internal diagonals (𝐿𝑖𝑛𝑡) for each line
(denoted with S).

𝑆 = �𝐿𝑖𝑛𝑡

i D1 D2 S

1 1,3 1,4

2 1,3 2,5

3 2,4 1,4

17 S.H. Masovic & M. H. Saracevic/ Southeast Europe Journal of Soft Computing Vol.3 No.2Sep. 2014 (14-18)

4 2,4 2,5

5 2,5 3,5

3. Calculating distance between vertices and their

length for each line individually, which defines a
triangulation of the polygon

− Calculating distance
− Calculating length of the internal diagonals and

their sum

4. Updating table with all data

i D1 D2 S

1 1,3 1,4 23.47

2 1,3 2,5 22.83

3 2,4 1,4 23.06

4 2,4 2,5 23.51

5 2,5 3,5 23.73

5. Determining optimal triangulation based on all data

from the table
− Finding minimal value of the last column

min(S)

After obtaining weights for all triangulation, we find
minimal one (optimal), as follows:

min S(T5)= min(23,47; 22,83; 23,06; 23,51; 23,73)
min (S)= 22.83

In this case optimal triangulation is determined with
following internal diagonals: D1(1,3); D2(2,5).

More precisely, if we express the same triangulation
via triangles ∆(1,2,3); ∆(1,3,5); ∆(3,4,5), we get the same
optimal triangulation as in Example 1.

Conclusion is that we get the same result in both
cases, only that in second case we calculate with less data
which is reflected in the simplicity of the proposed
method.

3.3 EQUALITY OF CASE 1 AND CASE 2

If we observe the method of calculating in the
Example 1, is noted that in the calculating set of
perimeters of triangles (weights) in one triangulation,
every internal diagonal is always used twice.

If we eliminate length of outer diagonals (𝐿𝑜𝑢𝑡) of
given polygon we do not disturb the unity of calculating

triangulation weight. Further elimination in the sum of the
lengths of internal diagonals which appears twice, we
obtain the same value as in Example 2 (table in step 4).

Procedure of elimination is given in following
equation:

(𝑊 (𝑇𝑛) − ∑𝐿𝑜𝑢𝑡)/2 = S (3)

Applying equation (3) on concrete example for the
Case 1 and Case 2 is given below:

1: (82,94-36)/2=23,47

2: (81,66-36)/2=22,83

3: (82,12-36)/2=23,06

4: (83,02-36)/2=23,51

5: (83,46-36)/2=23,73

4. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

In this section are specified testing results in finding
optimal triangulation through two algorithms. Considering
that our method relies on finding optimal triangulation
from the set of all generated triangulation, for the purposes
of comparative analysis we selected Hurtado-Noy
algorithm (more about this algorithm you can see in the
paper [12], and details of the implementation in [13]).

Details and experimental results for Block method
(which are partially taken in table 1) can be found in paper
[13].

Table 1: Execution times for Block method and time for
finding optimal triangulation (in seconds)

n Number of
triangulation Block method Optimal

triangulation

5 5 0.16 0
6 14 0.26 0.01
7 42 0.34 0.02
8 132 0.41 0.03
9 429 0.46 0.05

10 1,430 0.54 0.08
11 4,862 0.85 0.14
12 16,796 1.32 0.21
13 58,786 4.4 0.34
14 208,012 24.13 0.59
15 742,900 85.3 1.07

18 S.H. Masovic & M. H. Saracevic/ Southeast Europe Journal of Soft Computing Vol.3 No.2Sep. 2014 (14-18)

Table 2: Execution times for Hurtado-Noy algorithm and
time for finding the optimal triangulation (in seconds)

n Number of
triangulation Hurtado-Noy Optimal

triangulation

5 5 0.19 0
6 14 0.34 0.01
7 42 0.42 0.03
8 132 0.49 0.05
9 429 0.67 0.07

10 1,430 1.18 0.11
11 4,862 3.81 0.21
12 16,796 12.46 0.34
13 58,786 43.51 0.58
14 208,012 119.05 0.79
15 742,900 318.63 2.75

Table 3: The total execution time for two algorithms and
speedup

n Optimal triangulation
based on Block method

Optimal triangulation
based on Hurtado-Noy Speedup

5 0.16 0.19 1.19
6 0.27 0.35 1.30
7 0.36 0.45 1.25
8 0.44 0.54 1.23
9 0.51 0.74 1.45

10 0.62 1.29 2.08
11 0.99 4.02 4.06
12 1.53 12.8 8.37
13 4.74 44.09 9.30
14 24.72 119.84 4.85
15 86.37 321.38 3.72

The testing is performed in NetBeans testing module
“Profile Main Project / CPU Analyze Performanse” in
configuration*: CPU - Intel(R) Core(TM)2Duo CPU,
T7700, 2.40 GHz, L2 Cache 4 MB (On-Die,ATC,Full-
Speed), RAM Memory - 2 Gb, Graphic card - NVIDIA
GeForce 8600M GS.

5. CONCLUSIONS

The significance of the presented method is reflected
in the fact that using the recorded values can be a very
effective way to find the optimal triangulation. That means
in finding allowed triangulation (combination of internal
diagonals which do not intersect) directly is recorded
values for vertices and their weight. This is suitable for
fast drawing the optimal triangulation of irregular convex
polygon.

REFERENCES

[1] Keil M.J., Vassilev T.S. (2006) “Algorithms for optimal area
triangulations of a convex polygon”, Computational Geometry,
Vol. 35:173-187.

[2] Anagnostou E. and Corneil D. (1993) “Polynomial-time
instances of the minimum weight triangulation problem”,
Computational Geometry: Theory and Applications, 3:247–259.

[3] Beirouti R. and Snoeyink J. (1998) “Implementations of the
LMT heuristic for minimum weight triangulation” In Proceedings
of the 14th Annual ACM Symposium on Computational Geometry,
pp 96–105.

[4] Belleville P., Keil M., McAllister M. and Snoeyink J. (1996)
“On computing edges that are in all minimum–weight
triangulations”, In Proceedings of the 12th Annual ACM
Symposium on Computational Geometry, pp. V7–V8.
[5] Dickerson M. T., Keil J. M. and Montague M. H. (1997) “A
large subgraph of the minimum weight triangulation”, Discrete
and Computational Geometry, 18:289–304.

[6] Drysdale R. L., McElfresh S. and Snoeyink J. S. (2001) “On
exclusion regions for optimal triangulations”, Discrete Applied
Mathematics, 109:49–65.

[7] Heath L. S. and Pemmaraju S. V. (1994) “New results for the
minimum weight triangulation problem”, Agorithmica, 12:533–
552,

[8] Keil M.J., Vassilev T.S. (2003) “An algorithm for the MaxMin
area triangulation of a convex polygon”, In Proceeding of the 15th
Canadian Conference on Computational Geometry, pp. 145-149.

[9] Bern M., Edelsbrunner H., Eppstein D., Mitchell S., Tan T.S.
(1993) “Edge Insertion for Optimal Triangulations”, Discrete and
Computational Geometry 10 (1): 47–65,
doi:10.1007/BF02573962, MR 1215322

[10] Keil M. J. (1994) “Computing a subgraph of the minimum
weight triangulation”, Computational Geometry. pp. 413–26

[11] Stanimirovic P, Krtolica P, Saracevic M, Masovic S (2012)
“Block Method for Convex Polygon Triangulation”, Romanian
Journal of Information Science and Technology - ROMJIST,
Vol.15, No.4:344-354

[12] Hurtado F. and Noy M.: Graph of Triangulations of a
Convex Polygon and tree of triangulations, Comput. Geom. 13
(1999), 179–188.

[13] Saracevic M., Stanimirovic P.S., Masovic S. and Bisevac E.,
Implementation of the convex polygon triangulation algorithm,
Facta Universitatis, series: Mathematics and Informatics, Vol. 27,
pp. 213–228, 2012.

