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Abstract 
A method is presented for protein secondary structure prediction based on 
the use of multidimensional regression. 200 proteins are chosen from 
RCSB Protein Database. Their secondary structures obtained through x-
ray crystallography analyses are downloaded from the same source. 
Primary and secondary structure of proteins are concatenated separately 
to create a sequence of 169 026 residues. First 150 000 of the amino acid 
residues and corresponding secondary structures are chosen to create a 
regression model. The remaining 19 026 residues are used for testing. 
Since we expect three outputs α-helices "S", β-sheets "H", and coiled 
coils "C", our regression modes consists of 3 × 20 × 23 parameters. 
These parameters are tuned and a correct classification rate of 62.50% is 
achieved on the test data. Furthermore, the performance of the regression 
model compared with online secondary structure estimation algorithms on 
14 unused proteins, and the performance of the regression model is found 
comparable with the online estimation tools. 
 
 

1. INTRODUCTION  

Large-scale sequencing projects produced a large number 
of protein sequences. In 1993 the number was 26,000 
(Bairoch  & Boeckmann,  1963; Ewbank & Creighton,  
1992) sequences, but before the end of the century the 
number easily past the 500,000  limit. Today, at the end of 
the year 2014 the number reached to 546,790. 
 
To compare the number of known proteins sequences, the 
number of proteins which is known by structure is still 
very limited, in 1993 it was at  about 1000 (Bernstein et 
al., 1977). Today it reached at 105,025 increased efforts 
focused on narrowing the widening gap. The most reliable 
prediction of the structure of new proteins is done by 
detection of significant similarities to proteins of known 
structure (Taylor & Orengo, 1989; Sander & Schneider, 
1991; Vriend & Sander, 1991). But only about one-seventh 
of new sequences have similarities to known structures 
(Bork et al., 1992) in the years 1993. 

 

 

Figure 1. Number of proteins whose structures are known 

 

http://www.scjournal.com.ba/


7 B. Akcesme, & F. Akcesme / Southeast Europe Journal of Soft Computing Vol.3 No.2Sep. 2014 (6-13) 
 
  
Attempts to predict structure from sequence by physical 
simulation techniques, such as molecular dynamics (Mom-
any et al., 1975; Karplus & Petsko, 1990), have fallen far 
short of solving the task of finding the "hidden" relation 
between the primary and tertiary structure. Although the 
folding process may require catalysts such as chaperonins 
(Hubbard & Sander, 1991), the basic hypothesis that the 
three dimensional (tertiary) structure of a protein is uniq-
uely determined by i t s  sequence o f  a m i n o  a c i d s  
( primary structure) appears to remain valid (Anfinsen et 
al., 1963; Ewbank & Creighton, 1992). A simple reduction 
of the prediction problem is the projection of the three-
dimensional structure onto one dimension, i.e. onto a 
string of secondary structure assignments for each 
residue. 
 
Secondary structure predictions have been performed  by  
various  methods  (Szent-Györgyi  & Cohen, 1957; Periti 
et al., 1967; Ptitsyn, 1969; Pain & Robson, 1970; Robson 
& Pain, 1971), ever since Pauling suggested that proteins 
form certain local conformational  patterns  like  helices  
and  strands (Pauling & Corey, 1951; Pauling et al., 1951). 
The different algorithms can be approximately grouped 
into those using (1) statistical information (Nagano, 1973; 
Chou & Fasman, 1974; Nagano & Hasegawa, 1975; 
Garnier et al., 1978; Schulz & Schirmer, 1979; Levin et 
al., 1986; Gibrat et al., 1987; Biou et al., 1988;  Kanehisa,  
1988;  Levin  &  Garnier,  1988; Fasman, 1989; Garrett et 
al., 1991; Muggleton et al., 1992); (2) physico-chemical 
properties (Lim, 1974; Ptitsyn & Finkelstein,  1983); (3) 
Sequence patterns (Cohen et al., 1983, 1986; Taylor & 
Thornton, 1983; Rooman et al ., 1989, 1991; Sternberg & 
King, 1990; Rooman   &  Wodak,   1991;  Presnell   et  al.,  
1992); (4) multi-layered ( or neural) networks (Bohr et  al., 
1988, 1990; Qian & Sejnowski, 1988;  Holley  & Karplus, 
1989; Bossa &  Pascarella,  1990;  Kneller  et al.,  1990;  
Hirst  &  Sternberg,  1992;  Maclin   & Shavlik, 1993; 
Stolorz et al., 1992; Zhang  et  al., 1992);  and (5)  
evolutionary   conservation   (Maxfield & Scheraga, 1979; 
Zvelebil et al., 1987; Frampton et al., 1989; Benner & 
Gerloff, 1990; Barton et  al., 1991; Niermann & Kirschner, 
1991; Ouzounis & Melvin, 1991; Musacchio et al., 1992; 
Russell et al ., 1992; Gibson et al., 1993).  
 
One of the problems of these prediction methods is that the 
formation of secondary structure elements is only to a 
certain degree due to sequentially local interaction of 
amino acids (Nagano & Hasegawa, 1975; Taylor, 1988; 
Zhong et al., 1992). However, most methods known to 
date do rely on local information. For the 1980’s these 
methods have hovered around 60 to 64% in overall three-
state accuracy.  Some methods predicted, e.g. β-strands, 
only 12 percentage points better than the chance value of 
33 % (Biou et al., 1988). In 1990’s, the reported overall 
accuracy of 66,5% (Zhang et al., 1992) and single 
examples of predictions of proteins of unknown structure 
have generated enthusiasm in the field (Barton et al., 1991; 
Benner et al.,  1992; Rost & Sander, 1992; Russell et al., 

1992). At those times it was claimed that predictions 
cannot be better than 65( ± 2) % (Garnier, 1992). 
 
In 1993, B. Rost, and C. Sander (Rost & Sander, 1993) 
presented the results of an in-depth analysis of the 
performance of multi-layered (neural) networks. By 
appropriately processing the information about structure 
contained in a multiple sequence alignment, it proves 
possible to increase the accuracy of secondary structure 
prediction above 70%.  
 
Following decades brought new ideas. In his 
comprehensive review B. Rost (Rost, 2001) summarized 
the state of art at the beginning of 2000’s. In his report 
there was at least five methods that pass the 75% correct 
classification limit. He concludes saying: 88% is a limit, 
but shall we ever reach close to there?  
 
In this paper we check the validity of  the basic hypothesis 
that the secondary, and three dimensional tertiary structure 
of a protein  is uniquely determined by  its  sequence  of  
amino  acids, that is its primary structure. 
 
The amount of variability in the secondary structure 
conformation of proteins at each residue suggests its 
relative importance and possible functions. Variability of 
outcomes at identical environments has also been a central 
concern in statistics. It would seem natural, then, to apply 
statistical methods to study structural variability in protein 
structures. In this paper, we undertake such an approach. 
We  use  the  most  classic  field  of  statistical  analysis 
that is regression to  analyze secondary structures of a 
family  of  multiple  protein structures (Zar, 2010; Ho, 
2013). We assume that variations in protein structure can 
be represented by a statistical formulation.Our formulation 
can be solved using techniques from regression analysis to 
obtain a model with high generalization power. 
 
2. FORMULATION OF THE PROBLEM 

To estimate the conformation of the protein at a given 
residue, we consider 6 right and 6 left neighbors of this 
residue. Our hypothesis is that the conformation at the 
central residue is determined by these neighbors and by 
itself. 

Primary structure:      DETTAL𝐕CDNGSG 
Secondary structure:   CCCCCC𝐒SSSSSS 
 
Figure 2 Primary and secondary structures of a protein of 
length 13 residues. 

 (a) Database  
Primary structures of 200 proteins are obtained from the 
PDB website. Secondary structures of these proteins are 
obtained in the form of the x-ray crystallography analyses 
in three conformations helix "h", sheet "s" , and others ".". 
Others are interpreted as coils "c". 
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Figure 3 α-helices, β-sheets, and coils on the same picture 

 (b) Symbols for Amino Acids  
Proteins are chains in the three dimensional space built 
from smaller chemical molecules called amino acids. 
There are 20 different amino acids. Each of them is 
denoted by a different letter in the Latin alphabet as shown 
below. 

#  Amino acid  Chemical  alphabet 
1 Alanine  Ala  A  
2 Arginine  Arg  R 
3 Asparagine  Asn  N 
4 Aspartic acid  Asp  D 
5 Cysteine  Cys C 
6 Glutamine  Gln  Q 
7 Glutamic acid  Glu  E 
8 Glycine  Gly  G 
9 Histidine  His  H 
10 Isoleucine  Ile I 
11 Leucine  Leu  L 
12 Lysine  Lys  K 
13 Methionine  Met  M 
14 Phenylalanine  Phe  F 
15 Proline  Pro  P 
16 Serine  Ser  S 
17 Threonine  Thr  T 
18 Tryptophan  Trp  W 
19 Tyrosine  Tyr Y 
20 Valine  Val V 

Table 1 Names and symbols of 20 amino acids 

Based on the protein chain it is easy to create its relevant 
sequence of amino acids replacing an amino acid in chain 
by its code in Latin alphabet. As a result a word on the 
amino acids’ alphabet is received. This word can be called 
a protein primary structure on the condition that letters in 
this word are in the same order as amino acids in the 
protein chain are. 

A secondary structure of a protein is a subsequence of 
amino acids coming from the relevant protein. These sub-
chains form in the three dimensional space regular 
structures which are the same in shape for different 

proteins. In the analysis, a similar representation for the 
secondary structures as for the primary ones has been used. 
A secondary structure is represented by a word on the 
relevant alphabet of secondary structures – each kind of a 
secondary structure has its own unique letter α-helix, H; β-
sheet S, and coil C. An alphabet of secondary structures 
consisting of three different secondary structures has been 
considered in the analysis. 

(c) Coding the Data  
In this paper, data corresponding to an amino acid consists 
of 6 right, and 6 left neighboring amino acids of this amino 
acid in the primary chain of the protein as in Table 2. In 
the second row, secondary structure conformations of 
these neighboring amino acids are given.  

 
A E E K E A V L G L W G K 
H H H H H E E E E C C C E 

Table 2 Six right, and six left neighboring amino acids of the 
amino acid V, and their conformations. 

Secondary structure letters H, E, and C are coded as in the 
table below; 

H E C 
1 0 0 
0 1 0 
0 0 1 

Table 3 Codes for secondary structure letters H, E, and C. 

The data corresponding to an amino acid is coded by a 
20×13 matrix: 

 

 A E E K E A V L G L W G K 
A  1 0 0 0 0 1 0 0 0 0 0 0 0 
R 0 0 0 0 0 0 0 0 0 0 0 0 0 
N 0 0 0 0 0 0 0 0 0 0 0 0 1 
D 0 0 0 0 0 0 0 0 0 0 1 1 0 
C 0 0 0 0 0 0 0 0 0 0 0 0 0 
Q 0 0 0 0 0 0 0 0 0 0 0 0 0 
E 0 1 1 0 1 0 0 0 0 0 0 0 0 
G 0 0 0 0 0 0 0 0 1 0 0 1 0 
H 0 0 0 0 0 0 0 0 0 0 0 0 0 
I 0 0 0 0 0 0 0 0 0 0 0 0 0 
L 0 0 0 0 0 0 0 1 0 1 0 0 0 
K 0 0 0 1 0 0 0 0 0 0 0 0 1 
M 0 0 0 0 0 0 0 0 0 0 0 0 0 
F 0 0 0 0 0 0 0 0 0 0 0 0 0 
P 0 0 0 0 0 0 0 0 0 0 0 0 0 
S 0 0 0 0 0 0 0 0 0 0 0 0 0 
T 0 0 0 0 0 0 0 0 0 0 0 0 0 
W 0 0 0 0 0 0 0 0 0 0 1 0 0 
Y 0 0 0 0 0 0 0 0 0 0 0 0 0 
V 0 0 0 0 0 0 1 0 0 0 0 0 0 

Table 4 Code of the data corresponding to the central amino 
acid V. 
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3. THE MULTIPLE-REGRESSION EQUATION 
 
A simple linear regression for a population of paired 
variables is the relationship 
 
𝑌𝑖 = 𝛼 + 𝛽𝑋𝑖       (1) 
 
In this relationship, 𝑌𝑖 and 𝑋𝑖 represent the dependent and 
independent variables, respectively; 𝛽 is the regression 
coefficient in the sampled population; and 𝛼, the Y 
intercept,  is the predicted value of 𝑌 in the population 
when 𝑋 is zero. And the subscript i in this equation 
indicates the ith pair of X and Y data in the sample. 
 
In some situations, however, Y may be considered 
dependent upon more than one variable. Thus, 
 
𝑌𝑖 = 𝛼 + 𝛽11𝑋11𝑖 + 𝛽12𝑋12𝑖 + ⋯+ 𝛽𝑛𝑚𝑋𝑛𝑚𝑖    (2) 
 
or, more succinctly, 
 
𝑌𝑖 = 𝛼 + ∑ 𝛽𝑗𝑘𝑋𝑗𝑘𝑖𝑛

𝑘=1                                                     (3) 
 
in the existence of n independent variables.   
 
In the particular multiple regression model of this article, 
we have three sets of one dependent variable and 20 × 13 
independent variables.  
 
The population parameters 𝛽11, 𝛽12, … , 𝛽𝑛𝑚 are termed 
partial regression coefficients because each expresses only 
part of the dependence relationship; 𝛽𝑘𝑗 expresses how 
much Y would change for a unit change in 𝑋𝑘𝑗, if  all other 
independent variables were held constant. It is sometimes 
said that 𝛽𝑘𝑗 is a measure of the relationship of Y to 𝑋𝑘𝑗 
after controlling other independent variables; that is, it is a 
measure of the extent to which Y is related to 𝑋𝑘𝑗 after 
removing the effects of other independent variables. The Y 
intercept, 𝛼, is the value of Y when all 𝑋11, 𝑋12, … , 𝑋𝑛𝑚 
are zero. 
 
A regression with 𝑛 × 𝑚 independent variables defines an 
𝑛 × 𝑚 dimensional surface, sometimes referred to as a 
"response surface" or "hyperplane." 
 
The population data whose relationship is described by 
Equation (2) will probably not all lie exactly on a plane, so 
this equation may be expressed as 
 
𝑌𝑖 = 𝛼 + 𝛽11𝑋11𝑖 + 𝛽12𝑋12𝑖 + ⋯+ 𝛽𝑛𝑚𝑋𝑛𝑚𝑖  + 𝜖𝑖   (4) 
 
𝜖𝑖,  the " residual," or " error," is the amount by which 𝑌𝑖 
differs from what is predicted by 𝛼 + 𝛽11𝑋11𝑖 + 𝛽12𝑋12𝑖 +
⋯+ 𝛽𝑛𝑚𝑋𝑛𝑚𝑖 , where the sum of all 𝜖𝑖 's is zero, the 𝜖𝑖 's are 
assumed to be normally distributed. 
 

If we sample the population containing the 𝑛 × 𝑚 +
1variables 𝑌, 𝑋11, 𝑋12, … , 𝑋𝑛𝑚 in Equation (3), we can 
compute sample statistics to estimate the population 
parameters in the model.  
 
The multiple-regression function derived from a sample of 
data would be 
 
𝑌�𝑖 = 𝑎 + 𝑏11𝑋11𝑖 + 𝑏12𝑋12𝑖 + ⋯+ 𝑏𝑛𝑚𝑋𝑛𝑚𝑖    (5) 
 
The sample statistics 𝑎, 𝑏11, … , 𝑏𝑛𝑛 are estimates of the 
population parameters 𝛼, 𝛽11, 𝛽12, … , 𝛽𝑛𝑚, respectively, 
where each partial regression coefficient 𝑏𝑖𝑗  is the 
expected change in Y in the population for a change of one 
unit in 𝑋𝑖𝑗 if all of the other 𝑛 × 𝑚 − 1 independent 
variables are held constant, and a is the expected 
population value of Y when each 𝑋𝑖𝑗 is zero.  
 
Theoretically, in multiple-regression analyses there is no 
limit to 𝑛 × 𝑚, the number of independent variables (𝑋𝑖𝑗) 
that can be proposed as influencing the dependent variable 
(Y), as long as the size of the data 𝑁 ≥  𝑛 × 𝑚  +  2. At 
least 𝑛 +  2 data points are required to perform a multiple 
regression analysis, where n is the number of independent 
variables determining each data point. 
 
The criterion for defining the "best fit" multiple regression 
equation is most commonly that of least squares, which 
represents the regression equation with the minimum 
residual sum of  N squares : 

min 
𝛼,𝛽

��𝑌𝑖 − 𝑌�𝑖�
2

𝑁

𝑖=1

 

      (6) 
 
From Equation (4)  the objective function to be minimized 
can be written as 

𝐹(𝑎, 𝑏11, … , 𝑏𝑛𝑚) = ��𝑌𝑖

𝑁

𝑖=1

− (𝑎 + 𝑏11𝑋11𝑖 + ⋯+ 𝑏𝑛𝑚𝑋𝑛𝑚𝑖)�
2 

      (7) 
Minimum of this differentiable function is at the points 
where the gradient vanishes: 

𝜕𝐹(𝑎, 𝑏11, … , 𝑏𝑛𝑚)
𝜕𝑎

= 0, 
      (8) 

𝜕𝐹(𝑎, 𝑏11, … , 𝑏𝑛𝑚)
𝜕𝑏𝑖𝑗

= 0, 𝑖 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚. 

     
which leads 

𝑁𝑎 + 𝑏11�𝑋11𝑖 +
𝑁

𝑖=1

…𝑏𝑛𝑚�𝑋𝑛𝑚𝑖

𝑁

𝑖=1

= �𝑌𝑖

𝑁

𝑖=1

 

      (9) 
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𝑎�𝑋𝑘𝑗𝑖 +
𝑁

𝑖=1

𝑏11�𝑋𝑘𝑗𝑖𝑋1𝑖 +
𝑁

𝑖=1

… 𝑏𝑛𝑚�𝑋𝑘𝑗𝑖𝑋𝑛𝑚𝑖

𝑁

𝑖=1

= �𝑋𝑘𝑗𝑖𝑌𝑖

𝑁

𝑖=1

 

 𝑘 = 1,2, … , 𝑛, 𝑗 = 1,2, … ,𝑚. 
 
For   𝑛 × 𝑚  + 1 unknowns 𝑎, 𝑏11, … , 𝑏𝑛𝑚, we have 
𝑛 × 𝑚  + 1 linear equations in (9). After flatting the 
matrix of unknowns to a vector with  𝑛 × 𝑚  + 1  
components, 𝛼, 𝛽11, 𝛽12, … , 𝛽𝑛𝑚, the coefficient matrix 
becomes 
 

𝐴 =

⎣
⎢
⎢
⎡ 𝑁 ∑ 𝑋11𝑖𝑁

𝑖=1 ⋯ ∑ 𝑋𝑛𝑚𝑖𝑁
𝑖=1

∑ 𝑋11𝑖𝑁
𝑖=1 ∑ 𝑋11𝑖𝑋11𝑖𝑁

𝑖=1 ⋯ ∑ 𝑋11𝑖𝑋𝑛𝑚𝑖𝑁
𝑖=1

⋯ ⋯ ⋯ ⋯
∑ 𝑋𝑛𝑚𝑖𝑁
𝑖=1 ∑ 𝑋𝑛𝑚𝑖𝑋1𝑖𝑁

𝑖=1 ⋯ ∑ 𝑋𝑛𝑚𝑖𝑋𝑛𝑚𝑖𝑁
𝑖=1 ⎦

⎥
⎥
⎤
         

      (10)                                 
 
and the right hand side vector of the linear system of 
equations which has  𝑛 × 𝑚  + 1  components is 
 

𝑐 =

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡ �𝑌𝑖

𝑁

𝑖=1

�𝑋11𝑖𝑌𝑖

𝑁

𝑖=1
⋯

�𝑋𝑛𝑚𝑖𝑌𝑖

𝑁

𝑖=1 ⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤

 

      (11) 
 
3. IMPLEMENTATION OF THE MULTIPLE-
REGRESSION MODEL 
 
In our data we have three types of conformations, H, S, 
and C.  Therefore we have three different dependent 
variables. Accordingly, we look for three different 
multivariate regression models for each of them. First 
dependent variable has the value 1 for H, and zero for S, 
and C, second dependent variable has the value 1 for S, 
and zero for H, and C, and the third has the value 1 for C, 
and zero for H, and S. 
 
Training Data 

First 150000 of the amino acid residues and corresponding 
secondary structures of around 170 proteins are 
concatenated to form a long string of amino acids. Then 
from this string 13-tuples are formed, and amino acids 
occurring in right and left neighborhoods of the central 
amino acid, together with the central amino acid  are coded 
as shown in Table 4. These 20 × 13 matrices are the 
values of independent variables. The value of the 
dependent variable depends on the conformation of the 
central amino acid. For this data, the matrix A in (10), 

which is the same for all three models is computed. The 
right hand side vector c in (11) depends on the values of 
the dependent variable, hence three right hand side vectors 
are computed for three models. For each model, solving 
the system [𝐴|𝑐] the three sets of regression coefficients 
𝑎, 𝑏11, … , 𝑏𝑛𝑚 are found. 
 
Testing Data 

Using the remaining 19026 residues of the concatenated 
proteins, the testing data is coded and prepared as in for 
the training data. Each testing data is sent to the three 
models and the value of the dependent variable is 
computed. The model that produces the largest output, 
determines the conformation of the central amino acid of 
the data considered. Then the prediction of the regression 
model and the true conformations are compared to find the 
confusion matrix, and success in the estimation of the 
conformations of the testing data as helix, sheet, and coil. 
Correct classification rates of the training and testing data 
are given in Table 5.  

 
 Training % Testing % 

Regression Analysis 58.84 62.50 

Table 5 Correct classification rates on the training and 
testing data 

4.  RESULTS AND DISCUSSION 

To compare the robustness of the system with the ones that 
exist as free excess tools in the web, we have chosen 14 
additional proteins from NCBI Protein database  with their 
secondary structure estimates through x-ray analysis. The 
secondary structures of these proteins are obtained through 
the tools given in Chou-Fasman website1.  Experiment is 
made using Chou-Fasman (C-F), and Neural Network 
(ANN) estimates. Comparison of the regression results of 
this paper and results from these experiments are seen in 
Table 6.  

 PDB Codes CF NN RA  
1 2W6K 0.48 0.59 0.57 
2  2V4Y 0.51 0.67 0.67 
3 3BHJ 0.52 0.59 0.62 
4 3BBU 0.68 0.60 0.62 
5  3BH8 0.47 0.50 0.52 
6  3BL9 0.40 0.48 0.48 
7  2ZPE 0.52 0.71 0.66 
8  3BGM 0.43 0.71 0.72 
9 3CR3 0.49 0.72 0.68 
10 2Q8S 0.53 0.65 0.70 
  Average 0.50 0.61 0.62 

Table 6 Correctness of the estimates for the secondary 
structure of three experiments using Chou-Fasman, Neural 
Network, and regression model. 
 

                                                 
1 http://cib.cf.ocha.ac.jp/bitool/MIX/ 
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These results show that regression analysis which relies on 
a database of 200 proteins has a estimation power that is 
comparable with the famous online estimation tools. 
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