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1. INTRODUCTION  

Derivative is a financial instrument that has a value

depending on or derived from prices of underlying 
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Abstract 

Changes and fluctuations in commodity prices exert different effects on 

value chain participants, depending on the position they have in the chain. 

Agricultural commodities are exposed to a set of different factors 

influencing the prices of the commodities. They are influenced by the 

season, weather shocks, demand and supply forces, household income, 

tastes and preferences of the consumers. Observing the most recent 

history, high price fluctuations have been observed during the financial 

crisis in 2008. One out of many approaches for hedging the price risk is 

the usage of financial derivatives. This study will be concerned with the 

volatility modelling methods with the help of futures and options for corn 

and soya. Methods used for modelling the volatility a

Black Scholes Implied Volatility. The simplest method in ARCH family, 

namely the GARCH (1,1) method will be used for modelling volatility 

based on the historical futures data dating back to 2005. The implied 

volatility is derived solving back the Black – Scholes Model, only this 

time looking for sigma. The sole purpose of the thesis is to examine 

which of the two methods has a better predictive power. Model 

comparison is done with the help of forecast regression models. The 

regression models have shown the difficulty in assessing which model has 

more accurate predictive power. The Adjusted R2 for both models in both 

cases is relatively low. However, the GARCH (1,1) model has slightly 

higher values for this indicator. Even the GARCH (1,1) model h

a better performance, due to the relatively low adjusted R2 values, no 

stable conclusion regarding the model performance can be derived. 

 

 

 

Derivative is a financial instrument that has a value 

depending on or derived from prices of underlying 

assets(Hull, 2008). Options are financial instruments in 

the form of a contract that are traded between the writer 

of an option and an option holder, and it provides the 
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of an option and an option holder, and it provides the 
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contract holder to buy or sell the option at a strike price 

on exercise date either in the OTC market or on an 

exchange (Hull, 2008). It is possible to place an option on 

everything that can be traded, including grains, oil, 

metals, futures contracts, currencies. They are used as 

tools for hedging, arbitraging, and speculating, and 

therefore need to be properly priced. 

 

2. OPTIONS, FUTURES AND OTHER DERIVATIVES 

Two types of options exist: call option and put option. A 

call option provides the holder with the right to buy an 

asset at the exercise price on expiration date, whereas the 

put option provides the holder with the right to sell an 

asset at the exercise price on expiration date (Hull, 2008).  

 

2.1. Options 

A call option is a bullish instrument because increase in 

the price of the underlying security is expected, whereas 

the put option is a bearish instrument and the decrease of 

the underlying security is expected (Cohen, 2005). Another 

classification of options can be on American and European 

options. This category is not based on the geographical 

area on which they are traded, but rather on the time at 

which they can be exercised. American options can be 

exercised at any time before the maturity date, unlike 

European options that can be exercised only at the maturity 

date. (Hull J. C., Options, Futures, and Other Derivatives, 

2008) Two parties are involved in placing and option: the 

writer and the buyer of the option. The writer is an 

individual who creates and option and has to fulfill the 

legally binding obligation, and the buyer is the party that 

holds the option and obtain rights to either exercise it or 

not, unlike the futures contracts (Hull, 2008). Investing in 

options has both its advantages and drawbacks. One 

advantage is the leverage they give to the option holder. 

The option holder can lose only the amount of money that 

is invested in the option (in the worst case). On the other 

hand, profits might be quite high depending on whether the 

price of the underlying security are going up or down. A 

drawback of these contracts is that the holder has no right 

on dividends nor ownership. (Gitman & Joehnk, 2008) 

As already mentioned, the parties involved in option 

issuance are the buyer and the writer. The buyer of the 

option takes long position, whereas the seller takes the 

short position. According to that, option trading can have 

four positions: Long Call, Long Put, Short Call, Short Put 

(Hull J. C., Options, Futures, and Other Derivatives, 

2008). As can be concluded from Table 1 by purchasing an 

option, the buyer acquires certain rights that he or she does 

not have to exercise, whereas the seller (or the writer of an 

option) has to exercise those rights. 

 

Table 1: Options Positions 

 

 Buyer (long) Seller (short) 

Call Right to buy Obligation to sell 

Put Right to sell Obligation to buy 

 

According to Cohen (2005), the investors are seeking to 

increase the value of the option, investors will buy put and 

call options that have at least three months left until the 

expiration date, and in that way, try to meet their 

expectations (Cohen, 2005). Option price is comprised of 

two parts: strike price and fundamental value.The strike 

price or exercise price is a contract price at which the 

option can be exercised. Fundamental or intrinsic value is 

the difference between the spot price and strike price. The 

fundamental value for call options is calculated as in 

Equation (1): 

Fundamental	Value	of	a	Call
= (Market	price	of	the	underlying	asset
− Strike	price	on	the	call) 

(1) 

Simply said, the fundamental value of a call is the 

difference between the market price of the underlying asset 

and the strike price on the call. In the Table 2 it is 

summarized when a call option is at the money, in the 

money, and out of the money. 

Table 2: Call Options 

In the money Strike Price < Spot Price 

At the money Strike Price = Spot Price 

Out of the money Strike Price > Spot Price 

 

Put options are not valued in the same way as call options, 

and their fundamental value is calculated according to 

Girman & Joehnk (Girman & Joehnk 2008) as shown in 

Equation (2): 

Fundamental	Value	of	a	Put	
= 	Strike	Price	on	the	put	– 	Market	price	of	underlying	assets.			 

	(2) 

In Table 3 it can be seen when a put is in the money, at the 

money and out of the money. 

Table 3: Put Options 

In the money Strike Price > Spot Price 

At the money Strike Price = Spot Price 

Out of the money Strike Price < Spot Price 

 

Options are never sold at their fundamental or intrinsic 

valuebut at the premium price. The premium price is the 

price the buyer pays in order to obtain the rights to buy or 

sell certain amount of underlying securities, whereas the 

seller of the option views it as a compensation for issuing 
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the option and having certain obligations to fulfil. The 

seller keeps the premium regardless of whether the option 

is exercised or not. (Gitman & Joehnk, Chapter 14: 

Derivatives Securities, 2008) 

Special type of options mostly used for agricultural 

commodities (such as corn, soybeans, cotton, crude oil, 

natural gas, gold and others) are options on futures 

contracts. The name alone implies that the underlying asset 

is the futures contract, and at the expiration date of the 

option, the futures contract is delivered. As with other 

types of options, the holder obtains the right, but not the 

obligation to enter into a futures contract at a certain price 

in the future. If the call futures option is exercised, the 

holder of the option receives long futures position together 

with the cash from the excess of the futures contract over 

the strike price, and vice versa holds if a put option is 

exercised. The underlying futures contract has later 

expiration date than the option contract. Futures contract in 

the role of the underlying asset has the same behavior 

pattern as the stock with dividend yields, and this is 

accomplished by setting the stock price equal to the risk 

futures price, and the dividend yield equal to the risk-free 

rate. Usually these options are American type of options. 

One of the main reason for the usage of this type of 

options is because of its high liquidity. Another reason is 

due to the fact that the futures price is immediately known, 

unlike the spot price of the underlying asset. The reason 

why it is so popular in the agricultural sector is for the 

trading convenience. (Hull J. , Futures Options, 2008) 

 

2.2 Futures 

 

Futures are another derivative instrument used for hedging 

the risk of price fluctuations. Futures are standardized 

forward contracts between two parties at a predetermined 

price at a specified time in the future. Futures contracts are 

traded at exchanges around the world, including CBOT, 

CME, NYME, NYSE Euronext, EUREX, BM&F 

BOVESPA.  As is the case with the options, the buyer of 

the futures contract takes long position, whereas the seller 

of the futures contract takes short position. In most of the 

cases in trading with futures, the investors are engaging 

into closing out position. Closing out a position means 

entering an opposite trade to the original one.(Gitman & 

Joehnk, Commodities and Financial Futures, 2008) 

All futures quotes can be obtained from exchanges. Prices 

are comprised of Opening price, highest price and lowest 

price. The Closing price is the settlement price which is 

used for calculating daily gains and losses and adjusting 

the margin requirements. Trading volume and open 

interest data can also be withdrawn from exchanges. 

(Futures options, 2008) 

Futures prices create trading patterns, or trends. Depending 

on the underlying asset and commodity traded, the futures 

prices may have different behaviors as the maturity day 

approaches. In case of gold, the futures prices usually 

increase with the maturity of the contract. Markets where 

the futures prices rise as the maturity of the contract 

approaches are known as normal markets, whereas the 

markets with decreasing futures prices are known as 

inverted markets. A specific case is with agricultural 

commodities, where the prices of the futures might have 

mixed patterns caused by both increase and decrease of the 

prices depending on the season.(Futures Contracts, 2011) 

The contract delivery period is appointed by the exchange. 

The decision of the place of delivery is made by the seller 

of the contract, where the seller issues the notice of 

intention to deliver to the exchange clearing house. The 

exchange finds the party that will accept the delivery. The 

reason for this is that the primary holder of the contract 

might not be the party which will take the delivery, since it 

is already mentioned that the long position holders usually 

go closing out the position. The notice of intention to 

deliver is comprised of information regarding the quantity 

of contracts to be delivered, and in cases of commodities, 

what grade of commodities will be delivered. The 

exchange matches the short and long position holders to 

deliver the contract. Futures contracts have three critical 

days: 

1. First notice day – represents the first day at which the 

notice of intention can be submitted to the exchange 

2. Last notice day -  represents the last day at which the 

notice of intention can be submitted to the exchange 

3. Last trading day – represent the last couple of days 

before the last notice day.(Gitman & Joehnk, 

Commodities and Financial Futures, 2008) 

There are two main types of traders: 

1. Futures commission merchants 

2. Locals. 

FCM are given instructions by their clients and they follow 

and charge commission for executing orders, whereas the 

locals doing trade on their own account. A market order is 

an order to buy or sell with a broker immediately and with 

the best current market price. Other forms of orders also 

exist: 

A limit order – is an order to buy or sell at a specified 

price. Depending on whether buying or selling order 

should be delivered, a buy limit order can be executed at 

the limit price or below it, and vice versa stands for the 

selling order. 

Stop order or stop-loss is an order to buy or sell as soon as 

the specified price has been reached, which is also known 

as the stop price and becomes a market order. 

Stop – limit order – combines stop and limit orders. When 

the specified price is reached, it becomes the stop price. 

After this price is reached, the stop limit order becomes the 

limit order. 
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Market if touched order– is executed at the best available 

price, meaning that an order to buy or sell are executed 

when the instruments price is below or above the market 

price. The main idea of this order is to take advantage of 

unexpected fluctuations in prices of underlying assets. 

Discretionary order or market – not – held order is a 

special type of order offered by certain exchanges. It is 

traded as a market order, but may be postponed if the 

broker expects a better price in the future. 

A time of day ordersspecifies a particular period of time 

during which the buying or selling order can be executed.  

An open order or a good till cancelled is an order to buy or 

sell that is in effect until the trading of the contract is 

executed at the specified price. A fill or kill order is a 

special type of order where the buy or sell must be 

executed immediately, or not at all. (Hull J. , Futures 

Options, 2008) 

 

Table 4: Futures attributes summarized 

 
Traded on an exchange 

Standardized contract 

Range of delivery dates 

Settle daily 

Contract is usually closed out prior to maturity 

Virtually no credit risk 

Source (Options, Futures and Other Derivatives, 8th edition, John 

C. Hall, chapter 3, pg. 41) 

 

Economists define price volatility as the standard deviation 

of logarithmic prices (Gilbert & Morgan).Main causes of 

price volatility are changes in production and production 

costs, consumer behavior, stockholding. The production 

depends on the fields that have been planted as well as 

weather shocks. The consumer behavior is mostly 

determined by the changes in income of an individual, and 

changes in prices of commodities which force the 

consumers to switch to substitutes. Stockholdings of grains 

were low in 2006, which resulted in high price volatility of 

grains. Period needed to recover the stockholdings might 

last for years. These shocks might be correlated, and may 

harm also non-agricultural markets. (Gilbert & Morgan) 

Prices of agricultural commodities are adjusted seasonally, 

which is not a characteristic of other financial instruments 

(Dharmawan, 2017). 

The importance of derivatives in agricultural commodities 

has enlarged in the last two decades, since the volume and 

variety of agricultural commodities traded on the market 

has increased (Dharmawan, 2017),(Hull J. C., Options, 

Futures, and Other Derivatives, 2008).  

This research is concerned with modelling the volatility. 

Two approaches for that will be used, namely the GARCH 

(1,1) model and the Black – Scholes Implied Volatility 

Model. The purpose of the study is to examine which 

model has a better and more accurate predictive power. 

Data used for the purpose of conducting the research has 

been obtained from two exchanges, CBOT and CME. The 

futures data, as underlying assets, is in time interval 

between 01/01/2005 until 01/04/2018. The options on 

futures data is in time interval between 01/01/2013 until 

01/04/2018. The hypothesis is that the GARCH (1,1) has a 

better predictive power compared to the Black – Scholes 

Implied Volatility Model. 

 

3. METHODOLOGY 

Finance is a really dynamic and one of the most changing 

areas in the corporate business world. A popular topic 

among the researchers is the option valuation. For decades 

attempts existed to create the proper model for valuation. 

In 1960s many mathematicians such as Sprenkle (1961), 

Ayes (1963), Samuelson (1965), Boness(1964), Chen 

(1970) and others tried to create option valuation model. 

They expressed their work based on the warrants 

valuation, and generated the same formulas for option 

valuation, but still something was missing. 

3.1 Black – Scholes – Merton Model 

Published in 1973, “The Pricing of Options and Corporate 

Liabilities” by Fischer Black and Myron Scholes, new and 

original model for options pricing has been introduced. 

They transformed the option pricing model into partial 

differential equations with variable coefficients. The idea 

was about constructing the riskless portfolio taking 

positions in bonds (cash), option, and underlying stock. 

(A.S.Shinde & K.C.Takale, 2012).  

According to Fischer Black and Myron Scholes (Black & 

Scholes, 1973), Scholes and Merton Their assumption was 

that “ideal conditions” existed on the market, and their 

option was derived from the value of the stock as an 

underlying asset: 

1. Constant short-term interest rate over time 

2. Stock price follows a random walk, and the 

variance of the variance rate is proportional to the 

square of the stock price 

3. The stock does not pay dividends 

4. Only European options are taken into 

consideration 

5. There are no transaction costs involved in buying 

or selling them 

6. No penalties on short selling 

7. At the short-term, interest rate it is possible to 

borrow any fraction of the price. 

Variables that this model includes are: 

1. Exercise or strike price of the option 

2. Time remaining until expiration date 

3. Current price of the stock or any other underlying 

asset 

4. Interest rate over the life of the option  
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5. Volatility of the underlying asset price – it is 

considered to be even the most important 

variable, since the changes in the volatility might 

influence the option’s value. 

Assumptions regarding constant volatility and risk-free 

interest rate can be relaxed and transferred to becoming the 

function of time.(The Black - Scholes - Merton Model, 

2008) 

If all the assumptions hold, the value of the option will be 

expressed as a function of time and the price of the 

underlying security or V(S, t). Using the generalized 

Weiner process, the stock price behavior in the real – 

world situations can be explained as in Equation 3: 

																					"# = 	μ#	"% + 	'#	"(							       (3) 

This equation tells that the return is randomly distributed 

(the returns are random walk), where µ denotes the 

expected rate of return, and σ represents the volatility. 

Using the Ito’s Lemmamathematical identity,it is 

attemptedto price the expected value. The following 

equation can be written: 

") = *+
*, "# + 	 *+

*- "% + .
/ ∗ *1+

*,1 ("#)/   (4) 

And it represents the change in the price as the stock 

moves. If Equation 3 is implemented into 

Equation 4, Equation 5 is obtained: 

") = *+
*, # ∗ (μ"% + 	'"()+ δV/δt*dt+S^2*σ^2*dt       (5)              

Next step is to eliminate randomness ('"() by creating a 

portfolio which will be an option and a share of a stock. If 

randomness (Wiener process) is eliminated, it is clear that 

the portfolio will earn a risk - free rate. In other words, it 

will behave like cash. The elimination of randomness will 

follow Equation (6), and the value of the portfolio is: 

) − *+
*, ∗ #     (6) 

Now, the value of the option is calculated. S is known, the 

coefficient 
*+
*,is a constant number. The change in the 

portfolio is calculated as: 

") − *+
*, ∗ "#																																																															(7) 

Basically, it represents the sensitivity of the option price to 

the movement of the stock.  

Implementing the above formulas, Equation (8) can be 

derived 

2)
2# # ∗ μ"% + 2)

2# ∗ # ∗ 2 ∗ "( + 2)
2% ∗ "% + #/ ∗ '/ ∗ "%

− 2)
2# ∗ # ∗ μ − 2)

2# ∗ # ∗ '	
∗ "(																									 

(8) 

The risk-free rate will be the part of the risk neutral form, 

and can be expressed as follows: 

After solving the Equation (7), the Equation (8) is obtained 

which represents the risk-neutral form of the 

portfolio: 

*+
*- "% + #/ ∗ '/ ∗ "%(9) 

This means that the portfolio is earning the risk-free rate, 

which is shown in Equation (10): 

*+
*- "% + #/ ∗ '/ ∗ "% = 3 ∗ 4) − *+

*, ∗ #5 "%(10) 

Solving the Equation (10), the Black Scholes Formula is 

obtained in Equation (11): 

*+
*- + .

/ ∗ #/ ∗ '/ + *+
*, ∗ # − 3) = 0(11) 

Solving the differential equation (10), the equation (11) for 

the call options can be obtained: 

7 = #8("1) − :;<=>8("2)   (12) 

Where S is the current stock price, K is the option exercise 

price, T is the time to expiration date, and r is the risk-free 

rate, N is the cumulative normal distribution, and e = 

2,7183. 

Additionally, values for d1 and d2 can be provided in 

equations (13) and (14), where s represents standard 

deviation of stock returns, and inserting them into equation 

(12) the European call option price can be calculated: 

"1 = ?@4 A
B5CD=CE1

1 F∗-
G ∗ √%(13) 

"2 = 	 ?@4 A
B5CD=<E1

1 F∗-
G ∗ √%(14) 

Besides the popularity of this model used in the 

calculations of options’ prices and its pros, also cons exist. 

One of them is that the assumption of constant risk-free 

rate of return and volatility are not true in real life. All of 

them can change over time with high variance, and this 

might cause the fluctuation of option price. Even the 

variances are not high, high frequencies can cause 

problems. Next, the liquidity risks are ignored and the 

assumption about costless trading is made. Assumption 

that stock prices show lognormal returns, are not correct. 

In the real world, the distributions are skewed, and the 

options might be either overpriced or underprized. The 

model assumes that no dividends are paid out, which 

further leaves an impact on the valuation process. It is only 

applicable to European Options, which can be exercised at 

the expiration, and is unsuitable for American Options 

since American Options have a more flexible rule when it 

comes to exercising the option. The reasons why this 

model is often used is that they are a popular method for 

non-dividend paying stocks used for delta hedging 

strategy. (Yalincak, 2012) 
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3.2 Implied Volatility Model 

 

One of the drawbacks of the Black-Scholes model is one 

of its assumptions about the constant instantaneous mean 

and volatility. Even the application of this model is high, it 

has some controversies in a sense that future volatilities 

(forecasts) need to be made based on the constant past 

volatility. However, the asset prices are characterized with 

high kurtosis and skewness, which means that the changes 

in risk move much faster and frequently than the Gaussian 

distribution anticipates. Therefore, more rational investors 

deal with models that take into account data with 

stochastic volatilities. Two possibilities for prediction of 

future market prices exist: to calculate the realized 

volatility from the historical data (GARCH model covered 

in the next section) or to calculate the implied volatility 

from the current option prices. These models require the 

prediction of entire joint probability distribution for asset 

returns and are much more complicated than models with 

constant volatilities. (Canina & Figlewski, The 

Informtional Content of Implied Volatility, 1993) 

Implied volatility model is a parameters part of the options 

pricing model, which is analyzing past behaviors and 

based on these patterns predicts the future situation on the 

market (Dumas, Fleming, & Whaley, 1998). Implied 

volatility is an increasing function when the historical 

volatilities are low, and vice versa (Volatility Smiles, 

2008). The implied volatility is an unobserved part of the 

BSM model. To obtain the implied volatility, following 

inputs should be available: 

1. The market price of the option 

2. The price of the underlying security 

3. The strike price, 

4. Time to expiration 

5. The risk-free interest rate. 

Implied volatility is calculated by inserting the market 

price of the option into the Black Scholes model and back 

solving it to get the value of implied volatility (Athanasios 

Trianfyllou, 2013).  

 

3.3 Newton – Raphson model 

 
To calculate the Black – Scholes Model backwards, some 

numerical approaches should be taken into consideration, 

which is in this case the Newton – Raphson Model. This is 

an efficient way for finding roots. It is an approximation 

method that uses analytic derivative to make estimations 

about where the solution can be found. The approximation 

that starts with an initial guess can be improved with the 

formula shown in Equation (15): 

'I + 1 = 	'I −	 J(KL)
JM(KL)      (15) 

The model and the market value of the option should not 

have significant differences, or in other words, the model 

value should be as accurate as possible to the market value. 

(YPMAt, 1995) 

This can be expressed as Equation (16): 

|)	OP3Q;% − )	OR";S| <	∈               (16) 

The Black – Scholes Equation can be expressed as the 

function of x, as in Equation (17): 

V(W) = )OR";S = V	(') = X#	(')        (17) 

The derivative of the Equation (17) is called vega, and can 

be expressed as shown in Equation (18): 

VM(') = 	 ∆V(')
∆' 																																																			(18) 

Vega is the measurement for changes in option prices 

relative to the 1% change in the volatility. (Cui, Rollin, & 

Germano, 2016) 

Var (xt | xt-1, xt-2, …) = σ w
2 (19) 

Understanding the concept of volatility is from crucial 

importance since it is one of the key factors for price risk 

management, and making decisions based on observed 

price data Pt at certain time. The aim of GARCH is to 

model the return or growth of a series, so the return of an 

asset at time t with price Xt can be written as 

3% = [-<[-<.
[-<. (20) 

Assuming that there are r1,r2,…rn returns and that these 

returns are normally distributed 

rt ~ N (0 , σ
2
)(21) 

0 is the average expected value of rt and the variance is σ2
t. 

The variance of the model is written as: 

Var = (r1
2 
+ r2

2 
+….r3

2
) / n(22) 

Or written in a different form as: 

'/ = 	\1 ∗ 31/ + 	\2 ∗ 32/ + ⋯ \I ∗ 3I/(23) 

where 

\I = .
L(24) 

In that case, the simplest GARCH model with equally 

weighted periods can be written as: 

1
I ∗ (^1/ + ^2/ + ⋯ + ^I/)																																								(25) 

The \`can be assigned to different weights. If \ gets 

different values, then the simplest GARCH (1,1) model 

can be written as: 

'/ = 	\1 ∗ 	 '/(% − 1) + 	a1 ∗ 3/(% − 1)(26) 

Where \1 + 	a1 < 1	,\1 > 0, a1 > 0	 or the model is 

unstable. (yaacov kopeliovich, n.d.) 

The sum of \` weights should be equal to 1. To extend this 

idea, it is possible to include the long-run average variance 
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rate and assign some weight to it. This model can be 

written in the following form: 

'/% = 	e)f + 	\g/% − 1 + 	a'/% − 1     (27), 

Where VL represents the included long – run variance and 

the e is the weight assigned to it. The sum of \, a, e	must 

be equal to 1. (Hull J. , Estimating Volatilities and 

Correlations, 2008) 

This formula tells that the conditional variance of'/ at 

time t depends on both squared error terms and conditional 

variance in the previous period. GARCH (p,q) is a 

generalized model where p represents lagged terms of the 

squared error term and q terms of the lagged conditional 

variances. (Time Series Econometrics: Forecasting, 2004).  

There are ways to test how good the model is. The 

assumption of the model is that the variance changes as 

time passes, which means that there are periods with 

extremely high volatility, whereas in the other the 

volatility is relatively low. One way to test the model is by 

examining the autocorrelation between g/ and '/. If the 

autocorrelation is low, the model is good. Testing the 

autocorrelation can also be done by implementing the 

Ljung – Box statistics. The GARCH (1,1) model can be 

used to make estimations about the volatility term 

structure, and these estimations can be used to forecast the 

actual volatility structure. (Hull J. , Estimating Volatilities 

and Correlations, 2008) 

Some drawbacks of the model are related to the 

assumption that both positive and negative effects have the 

same impacted since both values taken are squared. 

Another drawback is that the parameters are tightly 

constrained. The models are more likely to over predict the 

volatility because the response to highly isolated returns is 

slow. (Robert H. Shumway; David S. Stoffer, 2016). 

 

4. LITERATURE REVIEW 

Even the idea of options existed in the time of Aristotle, 

trading options started in 17
th

 century in the United States 

(Gitman & Joehnk, 2008).Derivatives exchange markets 

exist for a very long time, dating back to 1848 when The 

Chicago Board of Trade has been established with the 

primary purpose to determine the standardized quantities 

of traded grains (Hull J. C., Options, Futures, and Other 

Derivatives, 2008).   

 

4.1 Historical Background 

 
The call options were traded in 1973, and in 1977 the put 

options entered the market as well (Hull J. C., Options, 

Futures, and Other Derivatives, 2008). 1970s and 1980s 

have been characterized with higher price volatilities in 

agricultural commodities (Gilbert & Morgan). The period 

between 2006 and 2013 had many ups and downs in prices 

of agricultural commodities. The first rapid price increases 

in agricultural commodities characterized the period 

between September 2006 and February 2008 

(Triantafyllou, Dotsis, & Sarris, Volatility Forecasting in 

Agricultural Commoidity Markets, 2013). This period is 

known as the “2008 price spike”(Gilbert & Morgan), in 

which the prices were pushed up to 70% of the nominal 

dollar value on average, and it resulted in the price 

increase of other related commodities to even higher 

levels(Triantafyllou, Dotsis, & Sarris, Volatility 

Forecasting in Agricultural Commoidity Markets, 2013). 

The prices went down in the second half of 2008, but they 

were still above the price level before the price spike. In 

2010 the prices rose sharply again, but calmed during 2011 

and 2012. However, 2013 experienced a new rise in prices. 

These fluctuations increased the risk of all market 

stakeholders. The concerns were especially about the 

effects on the poor countries which depend more on 

imported food and staple food, but also about the exporters 

whose profits and sales plans might be adversely affected 

(Triantafyllou, Dotsis, & Sarris, Volatility Forecasting in 

Agricultural Commoidity Markets, 2013) 

 

4.2 Volatility 

 

Three main issues the volatility forecasts resolve is asset 

allocation, risk management strategies, and taking bets on 

future volatilities. Volatility forecasts are mostly used in 

options trading, so the investors and traders for developing 

the trading strategy.(Reider, 2009) 

Many agricultural commodities, especially grains, are an 

input for processed food. High volatility in such prices is a 

major concern for the economy of every country, creating 

major import bill uncertainty accompanied with the 

exchange rate uncertainty. (Gilbert & Morgan, 

2010)Empirical evidence shows that futures agricultural 

prices have unexpected jumps and declines of prices. 

These can be explained by seasonal and maturity effects. 

“Samuelson hypothesis” (P.A., 1965) states that the 

volatility increases as the day to maturity approaches. 

Seasonal harvest of crops is accompanied with volatilities 

in futures prices. Researchers such Galloway and Kolb (W. 

& R.W., 1996)supported the maturity effect in their work. 

Anderson (R.W, 1985) also confirmed the maturity effect, 

but his work proved that the maturity effect has less power 

than seasonality. Empirical evidence has shown that the 

GARCH option pricing model outperforms the Blacks - 

Scholes model. (Lien, 2002) However, different estimation 

models can lead into different directions. The causes for 

that might depend on the data and the time period taken for 

these data. One example of that is illustrated in the work of 

Parakash (2011b). The data used for the analysis were 

cereals, and the observed period was longer than forty 

years. The volatility forecasts showed a mild upward trend. 

On the other hand, implied volatility model applied on the 

same data set showed a sharp upwards trend 
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(Triantafyllou, Dotsis, & Sarris, Volatility Forecasting in 

Agricultural Commodity Markets, 2013), (A., 

Safeguarding food security in volatile global markets).  

Research conducted by Giot (2003) on prices of cocoa, 

sugar, and coffee future contracts, the implied volatility 

derived from the Black – Scholes formula delivered better 

results than GARCH model (P, 2003). 

These volatility models can be also applied into other 

sectors beyond the agricultural sector. Canina and 

Figlewski (1993) applied the implied volatility model and 

historical volatility models on OEX index. Despite that the 

implied volatility model has proven itself to be a very good 

estimate of the future volatility, they disagree. This does 

not hold only for the implied volatility models, but also for 

the historical volatility models. (Canina & Figlewski, The 

Informational Content of Implied Volatility, 1993) 

Another interesting case where the model has been applied 

is the forecast of hourly prices in the deregulated 

electricity markets of Spain and California. GARCH and 

ARMA model have been compared and the results have 

shown the advantages of the GARCH model (Garcia, et 

al., 2005) 

 

5. DATA 

 

It is usually stated that more frequent data the better. It is 

also more favorable to use trading day’s data than the 

whole week, since there are not many changes in trading 

during the weekend or periods of calm. The life of an 

option is usually measured using trading days rather than 

calendar days. Due to data access limitations, this research 

will be provided with monthly data only. Despite the 

obstacles created by limited access to the data, several 

assumptions have been made in order to make the 

applicability of the models easier.  

5.1 Options Data 

Two types of data are used for conducting this research. 

The first data type are options, particularly options on 

futures contracts. One beautiful explanation for this exists: 

futures contracts have standardized quantities for 

delivering the agricultural commodities, and for that 

reason the futures contracts are used as underlying 

securities for the options. The options data are obtained 

from the Chicago Mercantile Exchange (CME), and the 

sample period is from 01/01/2013 till 01/04/2018 supplied 

by CME, with monthly frequency. The sample size is 

contained from 60 observations. The data for interest rates 

consists of daily 90-day rates and yields of Certificates of 

Deposits obtained from FRED
1
.  The importance for the 

usage of options data is to estimate the implied volatilities 

                                                
1
https://fred.stlouisfed.org/series/IR3TCD01USM156N 

by applying the Black – Scholes Implied Volatility Model. 

Even the options on futures are usually American options, 

several assumptions will be applied on them so the Black 

Scholes Merton model can be applicable. Namely, the first 

assumption is that the American option will adopt one 

characteristic of European options, and this is that it will 

not be exercised before the expiration date. The second 

assumption will be that the options will be traded at the 

money.  

 

5.2 Futures Data 

 
The futures data for agricultural commodities consist from 

daily futures prices of corn (ZC) and soya (ZS) adopted 

from Chicago Mercantile Exchange (CME). The sample 

period for data analysis is twelve years, more precisely 

from 01/01/2005 till 31/12/2017. The sample size is 

contained from 4,380 observations. The sample period 

covers even one highly volatile time interval and this is the 

global crisis 2006-2013 (even the volatility in their periods 

started in 2006). The prices of the commodities (soya and 

corn) have been obtained from FRED, and will be used as 

spot prices. The sample period is from 01/01/2005 till 

01/01/2018. 

6. DISCUSSION 

This part of the paper will be concerned with the results 

that have been obtained by processing the data. Data was 

processed with the help of RStudio.  Packages activated 

for data processing were “rugarch”, “parallel”, ”tseries”,   

“zoo”, forecast”, ”FinTS”, ”quantmod”. The first model to 

be analysed is the historical volatility based model, the 

GARCH (1,1) model.  

Since the analysed data set is time series related data, the 

zoo package will be from great help in analysing it. The 

first step is to see if ARCH model is present in the data. In 

other words, it has to be checked if the variance is 

changing across different points of time, which is the main 

objective of ARCH effect. Firstly, a plot has to be made of 

the daily prices of the corn futures prices which can be 

seen in Figure 1: 

 

Figure 1: Plot of Corn Futures Prices 
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The graph confirms the already known fact that the prices 

in period between 2006 and 2008 are showing a high 

volatility caused by the world crisis. Again, in period 

between 2012 and 2014 high fluctuations have been 

noticed, and after 2015, the prices calmed. The figure itself 

is telling that the volatility is not constant over time and 

that the ARCH effect is present. However, to prove the 

ARCH effect, Ljung Box test has been used. The Ljung – 

Box test is used for testing the autocorrelation in the 

squared returns. The null hypothesis of the Ljung – Box 

test is that there is not an autocorrelation between the 

returns. By running the Ljung – Box test in R, the 

following results have been obtained: 

 

Table 5: Ljung – Box test results 

 

 Box-Ljung test 

 

data:  core data(corn_f) 

X-squared = 901220, df = 360, p-value < 2.2e-16 

 

As it can be seen from the table, the p – value obtained is 

much lower than the significance level  

\ = 0.05. This indicates that the null hypothesis has been 

rejected, and that autocorrelation exists between squared 

returns. To check the accuracy of that test, the Lagrange 

Multiplier (LM) test. The LM test will be conducted with 

the help of FinTS package, and the function ARCHtest. In 

Table 6, the results of the LM test can be seen: 

Table 6: Lagrange Multiplier Test for Testing the 

ARCH Effects 

 ARCH LM-test; Null hypothesis: no ARCH 

effects 

 

data:  coredata(corn_f) 

Chi-squared = 3333, df = 12, p-value < 2.2e-16 

 

The LM test sets the null hypothesis with the claim that 

there is no ARCH effect among the data. The null 

hypothesis is rejected since the p – value is much lower 

form the significance level \ = 0.05. So, once again it has 

been proved that the ARCH effect is present. In other 

words, it is clearly evident that the volatility ARCH is 

present in this data. Since it has been confirmed that 

ARCH model is present in the data, for modelling 

volatility one of the ARCH family models can be used to 

model the volatility. In this paper this will be the 

Generalized Autoregressive Conditional Heteroscedasticity 

(GARCH (p,q)). The p value is referred to the use of prior 

returns, whereas the q values are referred to the use of the 

prior variances. For modelling volatility using this model, 

R provides a package called “rugarch” which will make it 

much easier to do so. It offers different possibilities of the 

GARCH model, including specification, estimation, back 

test, and forecasting. These steps will be conducted for this 

very data set accordingly. 

The first step to be conducted is the specification. The 

specification determines what kind of GARCH model 

should be used.  

Table 7: GARCH model specification 

 

*---------------------------------* 

*       GARCH Model Spec          * 

*---------------------------------* 

 

Conditional Variance Dynamics   

------------------------------------ 

GARCH Model  : sGARCH(1,1) 

Variance Targeting : FALSE  

 

Conditional Mean Dynamics 

------------------------------------ 

Mean Model  : ARFIMA(1,0,1) 

Include Mean  : TRUE  

GARCH-in-Mean  : FALSE  

 

Conditional Distribution 

------------------------------------ 

Distribution :  norm  

Includes Skew :  FALSE  

Includes Shape :  FALSE  

Includes Lambda :  FALSE  

 

This specification has defined the what kind of GARCH 

model is desirable. The model defined in the specification 

is GARHC (1,1), which means that the returns of 1 

previous periods, and volatilities of 1 previous periods are 

observed. The mean is about the expected value, and 

therefore the armaORder has been set to be (0,0). The 

reason for choosing this model is because of its simplicity.  

The next step is the estimation step. It is a process to find 

coefficients, and Maximum Likelihood is the approach 

used for that. 
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Table 8: GARCH Estimation Model 

 

*---------------------------------* 

*          GARCH Model Fit        * 

*---------------------------------* 

 

Conditional Variance Dynamics   

----------------------------------- 

GARCH Model : sGARCH(1,1) 

Mean Model : ARFIMA(1,0,1) 

Distribution : norm  

 

Optimal Parameters 

------------------------------------ 

         Estimate  Std. Error  t value Pr(>|t|) 

mu     292.295659    0.025993  11245.2        0 

ar1      0.995621    0.000267   3730.4        0 

ma1      0.025761    0.000002  13212.5        0 

omega    0.120890    0.000009  13904.2        0 

alpha1   0.033051    0.000009   3563.4        0 

beta1    0.964185    0.000155   6204.5        0 

 

From the table above, it can be seen that in the first part it 

is shown which GARCH model is used. In this case the 

GARCH (1,1) model has been used, because it is the 

simplest one. The mean chosen is ARMA (0,0,0) and the 

distribution is assumed to be normal. The parameters that 

will be observed for this analysis are the Optimal 

Parameters. From the Table 8, the following equation is 

derived: 

σt
2
 = 0.120890 + 0.033051 * xt-1 

2
+ 0.964185 * σt-1

2
                   

(28) 

The next step is back testing. The back testing is to 

determine the performance of the model, or in other words 

how the model has been with respect to the past data. So, 

basically we are looking for using the past data where we 

have the equals, and now we get predicted values based on 

Equation (28).Since Value at Risk (VaR) is the measure of 

the risk returns, it is assumed that in this paper it will be 

1%. If the return is less than the VaR, it is an exception. 

Therefore, the function used for the back testing is 

ugarchroll. The report obtained for the back testing is 

shown in Table 9: 

 

Table 9: VaR Backtest Report 

 

==========================================

= 

Model:    sGARCH-

norm 

Backtest Length: 3285 

Data:     

 

========================================== 

alpha:    1% 

Expected Exceed: 32.9 

Actual VaR Exceed: 157 

Actual %:   4.8% 

 

Unconditional Coverage (Kupiec) 

Null-Hypothesis: Correct Exceedances 

LR.uc Statistic: Inf 

LR.uc Critical:  6.635 

LR.uc p-value:  0 

Reject Null:  YES 

 

Conditional Coverage (Christoffersen) 

Null-Hypothesis: Correct Exceedances and 

   

 Independence of Failures 

LR.cc Statistic: Inf 

LR.cc Critical:  9.21 

LR.cc p-value:  0 

Reject Null:  YES 

 

The table shows that the model used is the standard 

GARCH model with the assumption to be normally 

distributed. The length of the back test is 3285 

observations, and alpha = 0.01. The expected exceedance 

is 33, but the actual exceedance is 157. In other words, it is 

4.8% and it is way up than the 1%, so the idea of correct 

exceedance is rejected. As it can be seen in the table, there 

are two tests the Kupiec and Christoffersen tests. Their 

hypotheses are that there are correct number of 

exceedances. Since the p – value in both cases is lower 

than 0.01, the hypotheses are rejected.  



54J. Karabegović/ Southeast Europe Journal of Soft Computing Vol.7 No.2 September 2018 (44-59) 

 

 

 

 

 

Figure 2: VaR Limits 

 

From the Figure above, the blue part represents the prices 

or returns. The red line represents the VaR at 1%, and the 

blue part is allowed to cross the red line 33 times. 

However, it crossed the line 157 times.  

After the model has been back tested, the forecast can be 

pursued. With the help of ugarchforecast, it was possible to 

forecast as many periods ahead as I wanted to choose. The 

forecast for the next thirty days I obtained as it follows in 

Table 10: 

 

Table 10: GARCH Model Forecast 

 

*------------------------------------* 

*       GARCH Model Forecast         * 

*------------------------------------* 

Model: sGARCH 

Horizon: 30 

Roll Steps: 0 

Out of Sample: 0 

 

0-roll forecast [T0=1979-02-28 01:00:00]: 

         Series   Sigma 

T+1   6.908e-04 0.01258 

T+2  -1.836e-04 0.01265 

T+3   6.240e-04 0.01273 

T+4  -1.219e-04 0.01280 

T+5   5.670e-04 0.01287 

T+6  -6.927e-05 0.01294 

T+7   5.184e-04 0.01301 

T+8  -2.436e-05 0.01308 

T+9   4.769e-04 0.01315 

T+10  1.394e-05 0.01322 

T+11  4.415e-04 0.01328 

T+12  4.662e-05 0.01335 

T+13  4.114e-04 0.01341 

T+14  7.449e-05 0.01348 

T+15  3.856e-04 0.01354 

T+16  9.826e-05 0.01360 

T+17  3.637e-04 0.01366 

T+18  1.185e-04 0.01372 

T+19  3.449e-04 0.01378 

T+20  1.358e-04 0.01384 

T+21  3.290e-04 0.01390 

T+22  1.506e-04 0.01395 

T+23  3.153e-04 0.01401 

T+24  1.632e-04 0.01407 

T+25  3.037e-04 0.01412 

T+26  1.739e-04 0.01418 

T+27  2.938e-04 0.01423 

T+28  1.831e-04 0.01428 

T+29  2.853e-04 0.01433 

T+30  1.909e-04 0.01439 

 

The column Series represents the expected volatility for 

the next thirty days, whereas the expected risk is in the 

Sigma column. It is also possible to estimate the VaR from 

the forecasted data. It is done by determining the 99% 

quantile which is 2.326348. This number multiplied with 

the standard deviation gives the VaR for one estimated 

period (each estimated Sigma is estimated for a certain 

predicted period).  

 

 

 



55J. Karabegović/ Southeast Europe Journal of Soft Computing Vol.7 No.2 September 2018 (44-59) 

 

 

 

Figure 3: Forecasted Sigma Values 

 

The analysis is continuing with the soya futures data. As 

for the corn futures data, the soya futures data is also 

obtained for the period from 03/01/2005. It has been 

processed in the same manner as the data for the corns. 

Firstly, the plot will be provided. With the plot the trends 

of futures prices can be determined. The plot is provided in 

Figure 4. From the figure it can be seen which periods are 

characterized with high volatilities, which is almost the 

same as in the case of corn futures.  

 

Figure 4: Forecasted Sigma Values 

 

As it is noticed for corn data, the futures prices are 

jumping in 2006, fluctuate until 2013, and again start 

moving rapidly. In the periods after the crisis, the prices 

have a normal level. In order to conduct the GARCH 

volatility modelling, the first thing to is to test whether the 

ARCH effect is present. From Table 11, the Ljung – Box 

test rejects the null hypothesis, with its p-value lower than 

the significance level of 0.05 and the volatility is 

heteroscedastic.  

 

Table 11: Ljung - Box Test 

 

 Box-Ljung test 

 

data:  as.double(unlist(soyaa1)) 

X-squared = 284240, df = 360, p-value < 2.2e-16 

 

Running the LM – test the same results have been 

obtained. The LM – test rejected its own null hypothesis 

with is p – value much lower than the significance level of 

0.05. 

Table 12:LM Test 

 

ARCH LM-test; Null hypothesis: no ARCH effects 

 

data:  coredata(d1) 

Chi-squared = 142.06, df = 12, p-value < 2.2e-16 

 

since the presence of the ARCH effect has been confirmed, 

the next step in the analysis of Soya Futures data is to 

specify the GARCH model. From the Table 13, the model 

specification can be read. 

 

Table 13: GARCH Model Speculation 

 

*---------------------------------* 

*       GARCH Model Spec          * 

*---------------------------------* 

 

Conditional Variance Dynamics   

------------------------------------ 

GARCH Model  : sGARCH(1,1) 

Variance Targeting : FALSE  

 

Conditional Mean Dynamics 

------------------------------------ 

Mean Model  : ARFIMA(1,0,1) 

Include Mean  : TRUE  

GARCH-in-Mean  : FALSE  

 

Conditional Distribution 

------------------------------------ 

Distribution :  norm  

Includes Skew :  FALSE  

Includes Shape :  FALSE  

Includes Lambda :  FALSE  

 

Again, GARCH (1,1) has been chosen because of its 

simplicity. The step that follows is related to the model 

estimation used to find the coefficients with the help of the 

Maximum Likelihood method. Table 14 will provide more 

information regarding this: 

 

Table 14: GARCH Model Fit 

 

*---------------------------------* 

*          GARCH Model Fit        * 

*---------------------------------* 

 

Conditional Variance Dynamics   

----------------------------------- 

GARCH Model : sGARCH(1,1) 

Mean Model : ARFIMA(1,0,1) 

Distribution : norm  

 

Optimal Parameters 

------------------------------------ 

         Estimate  Std. Error  t value Pr(>|t|) 

mu     1.3447e+03  2.0162e+01  66.6918 0.000000 

ar1    6.3880e-01  7.6160e-03  83.8730 0.000000 
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ma1    3.1671e-02  1.2813e-02   2.4719 0.013441 

omega  2.0948e+04  1.3926e+03  15.0424 0.000000 

alpha1 9.9753e-01  2.6312e-02  37.9123 0.000000 

beta1  1.4690e-03  1.2170e-03   1.2072 0.227349 

 

 

The first part of the table determines which GARCH 

model is used, and it can be seen that it is the GARCH 

(1,1) model. The optimal parameters are actually the 

coefficients for the formation of the GARCH (1,1) 

equation: 

                   σ t
2
= 0948e+04 + 9.9753e-01* x t-1

2
 + 1.4690e-

03 *σt-1
2 

  (29) 

The analysis will proceed with the Back Testing 

conducted. For the back testing, again the tool from the 

package “rugarch” will be used. In this case, 1% VaR will 

also be used for testing the performance of the model with 

respect to the past data.   

 

Table 15: VaR Backtest Report 

 

VaR Backtest Report 

==========================================

= 

Model:    sGARCH-

norm 

Backtest Length: 3244 

Data:     

 

========================================== 

alpha:    1% 

Expected Exceed: 32.4 

Actual VaR Exceed: 155 

Actual %:   4.8% 

 

Unconditional Coverage (Kupiec) 

Null-Hypothesis: Correct Exceedances 

LR.uc Statistic: 243.654 

LR.uc Critical:  6.635 

LR.uc p-value:  0 

Reject Null:  YES 

 

Conditional Coverage (Christoffersen) 

Null-Hypothesis: Correct Exceedances and 

    

 Independence of Failures 

LR.cc Statistic: 259.221 

LR.cc Critical:  9.21 

LR.cc p-value:  0 

Reject Null:  YES 

 

The results in the table show that the GARCH (1,1) model 

is assumed to be normally distributed and comprised of 

3244 observations. The alpha = 0.01. The expected 

exceedance is 33, but the actual exceedance is 155. In 

other words, it is 4.8% and it is way up than the 1%, so the 

idea of correct exceedance is rejected. Both Kupiec and 

Christoffersen tests have significantly lower p – value than 

the alpha which equals 0.01. Figure 5 depicts the VaR at 

1%. 

 

 

Figure 5: Series with 1% VaR limits 

 

The red line on the graph represents the 1% VaR. The 

back-test shows that the returns marked with the blue 

colour should are allowed to cross the red line 33 times, 

however, this happened 155 times. The final step is the 

forecast part. Again, a tool from the ugarch family will be 

used, namely the ugarchforecast function. With the help of 

this function, the forecasts for the upcoming thirty periods 

have been predicted. It is shown in Table 16: 

 

Table 16: GARCH Model Forecast 

 

        Series   Sigma 

T+1  0.0002087 0.01307 

T+2  0.0002266 0.01310 

T+3  0.0002348 0.01313 

T+4  0.0002386 0.01316 

T+5  0.0002404 0.01319 

T+6  0.0002412 0.01322 

T+7  0.0002416 0.01325 

T+8  0.0002418 0.01328 

T+9  0.0002419 0.01331 

T+10 0.0002419 0.01334 

T+11 0.0002419 0.01337 

T+12 0.0002419 0.01340 

T+13 0.0002419 0.01342 

T+14 0.0002419 0.01345 

T+15 0.0002419 0.01348 

T+16 0.0002419 0.01351 

T+17 0.0002419 0.01353 

T+18 0.0002419 0.01356 

T+19 0.0002419 0.01359 



57J. Karabegović/ Southeast Europe Journal of Soft Computing Vol.7 No.2 September 2018 (44-59) 

 

 

 

T+20 0.0002419 0.01361 

T+21 0.0002419 0.01364 

T+22 0.0002419 0.01367 

T+23 0.0002419 0.01369 

T+24 0.0002419 0.01372 

T+25 0.0002419 0.01374 

T+26 0.0002419 0.01377 

T+27 0.0002419 0.01379 

T+28 0.0002419 0.01382 

T+29 0.0002419 0.01384 

T+30 0.0002419 0.01386 

 

As for the corn futures prices, the column Series represents 

the expected volatility for the next thirty days, whereas the 

expected risk is in the Sigma column. Determining 99% 

quantile which is 2.326348, and multiplying it with the 

predicted standard deviation (for each predicted period 

separately), the future volatility is obtained.In Figure 6 the 

volatility forecast is graphically represented: 

 

 

Figure 6: Volatility Forecast 

 

The implied volatility model is deriving the volatility from 

an option pricing model in which we are familiar with the 

price of the option. Black – Scholes Model is a function of 

the underlying asset’s price, risk-free rate, volatility, the 

strike price, risk-free rate, and time to maturity. In the 

implied volatility procedure, the aim is to calculate the 

volatility or sigma, as it is denoted in the formula. The 

RScript attached in the appendix shows clear procedure of 

computing the implied volatility. Implied volatility 

represents the theoretical volatility of the Black-Scholes 

model which has to be calculated with the help of a 

numerical process, in my case, the Newton – Raphson 

model. The Newton- Raphson method is an algorithm for 

finding the roots of the potential solution. It starts with an 

initial guess. Vega tells in what direction the price will 

move if there is 1% change in volatility. 

Values that are compared are the model values, which 

represent the values of an option calculated using the 

implied volatilities derived from the Black – Scholes 

formula, and the actual options prices, or the market values 

as shown in tables 17 and 18, respectively.  

Using the RStudio package “fOptions”, the implied 

volatility has been calculated, firstly for corn, and then for 

soya. The results are shown in Table 17 and 18 for Corn 

and Soya option in Appendix, respectively.  

From the Table 17, it can be seen that the model values 

and the market values are quite accurate. The same 

procedure has been done for the soya products. Looking at 

Table 18 and comparing the model values to the market 

values, the same conclusion can be derived as for the corn 

options.  

Since the aim of the paper is to compare the models and to 

see which model is better performing one, another test for 

comparison has been conducted. The models used is the 

forecast regression model. For the GARCH (1,1) model, 

the forecasted volatility was the dependant variable, 

whereas the realized volatility was the independent 

variable. Table 19 in Appendix shows that the Adjusted R2 

for GARCH (1,1) equals 0.2469, whereas Table 20 shows 

that this variable is equal to 0.3273 for soya options. 

Running the regression to examine the relationship 

between the realized volatility relative to the implied 

volatility, the results from tables 21 and 22 indicate that 

Adjusted R
2 

is 0.0754 and 0.06636 respectively. These 

indicators show that the implied volatility models explain 

the realized volatility even less than the volatility 

forecasted with the help of GARCH (1,1). If the 

conclusion is attempted to be derived from the p – value in 

comparison with the value at risk of 1%, then only 

GARCH (1,1) model for soya products is statistically 

significant.  

 

7.CONCLUSION 

Price risk management was present even in 1700s, where 

the probability theory has been applied. After the World 

War II, risk management became a hot topic among the 

researchers. Risk management was usually linked to the 

insurances to protect the individuals from adverse events. 

However, after 1950s, financial derivatives as instruments 

for hedging the risk have been introduced. This thesis has 

been concerned with observing the agricultural commodity 

markets and hedging the risk with the help of futures and 

options. Options are financial derivatives that derive their 

value based on the underlying assets. The options give the 

buyer certain rights, but not the obligations, whereas the 

seller has the obligations needed to be fulfilled. A special 

case of options is options on futures. Options on futures 

are most common for agricultural commodities, and these 

options are usually the American options. Data that has 

been processed with the help of RStudio and its 

customized packages is obtained from CBOT and CME. 

The futures data for soya and corn has been obtained for 

period from 01/01/2005 until 01/04/2018, and the 

frequency of the data is daily. The options on futures data 

for corn and soya has a time interval between 01/01/2013 
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till 01/04/2018, and it has monthly frequency. Models used 

for modeling the volatility are the GARCH (1,1) model 

and the Black – Scholes Implied volatility model. The aim 

of this thesis was to determine the accuracy of these 

models and to assess and compare their predictive powers. 

It is important to mention that several limitations for 

conducting the study might have biased the results. These 

limitations are data access. The GARCH (1, 1) model 

analyzed daily data, whereas the implied volatility model 

has used the monthly data. By analyzing the models and 

comparing them with the help of Adjusted R
2 

, the 

conclusions that have been derived are that the GARCH 

(1,1) model has shown higher values for the indicator than 

the Implied Volatility Model. Even these results are 

consistent with the work conducted by other authors, the 

low value of the Adjusted R
2
 do not imply any confident 

conclusion regarding the model performances.   

Hopefully, this work will be extended in my future 

research. I am planning on extending this work by 

including additional tests for comparison of models, or 

even to introduce a model that is more accurate for the 

American options, such as Binomial Trees model. Besides, 

the data might be analyzed by excluding the assumption 

that the options will be exercised at their expiration date.  
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