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Abstract 
It is shown that time series about financial market variables are highly 

nonlinearly dependent on time. Fluctuations or volatility of returns on 

assets is one of them. Portfolio managers, option traders and market 

makers are all interested in volatility forecasting in order to get higher 

profits and less risky positions. The nonlinear dependence on time is very 

complex and parametric approaches, and linear models fail. Therefore as 

nonparametric tools artificial neural networks (ANNs) are candidates to 

deal with the volatility and/or return forecasting problems. On the other 

hand, based on the fact that volatility is time varying and that periods of 

high volatility tend to cluster, the most popular models in modeling 

volatility are GARCH type models because they can account excess 

kurtosis and asymmetric effects of financial time series. A standard 

GARCH(1,1) model usually indicates high persistence in the conditional 

variance, which may originate from structural changes. 

that artificial neural networks (ANN) will be constructed 

nonlinear relationship between past return innovations and conditional 

variance which may be missed by linear regression models. 

feedforward, back propagation network is used. The struct

return data makes FFANN difficult to converge. To overcome this 

difficulty a neural network with appropriate recurrent connection

context of nonlinear ARMA models are used. These are 

networks (JNN). Then Elman recurrent networks (ENN) and a mixture of 

the two (EJNN) are also used. The data set consists of returns of the 

S&P100  index daily closing prices obtained from the S&P100  website. 

The results indicate that the selected JNN(1,1,1) model has superior 

performances compared to the standard GARCH(1,1) model. The 

contribution of this paper can be seen in determining the appropriate NN 

that is comparable to the standard GARCH(1,1) model and its application 

in forecasting conditional variance of stock returns. Moreover, f

econometric perspective, NN models are used as a semi

method that combines flexibility of nonparametric methods and the 

interpretability of parameters of parametric methods. 

 

 

Using Feedforward and 

It is shown that time series about financial market variables are highly 

nonlinearly dependent on time. Fluctuations or volatility of returns on 

Portfolio managers, option traders and market 

recasting in order to get higher 

The nonlinear dependence on time is very 

complex and parametric approaches, and linear models fail. Therefore as 

nonparametric tools artificial neural networks (ANNs) are candidates to 

with the volatility and/or return forecasting problems. On the other 

ased on the fact that volatility is time varying and that periods of 

high volatility tend to cluster, the most popular models in modeling 

they can account excess 

kurtosis and asymmetric effects of financial time series. A standard 

GARCH(1,1) model usually indicates high persistence in the conditional 

variance, which may originate from structural changes. Hence it is natural 

will be constructed to capture the 

nonlinear relationship between past return innovations and conditional 

variance which may be missed by linear regression models. First a usual 

The structure of the 

NN difficult to converge. To overcome this 

appropriate recurrent connections in the 

are used. These are the Jordan neural 

networks (ENN) and a mixture of 

The data set consists of returns of the 

S&P100  index daily closing prices obtained from the S&P100  website. 

The results indicate that the selected JNN(1,1,1) model has superior 

ompared to the standard GARCH(1,1) model. The 

contribution of this paper can be seen in determining the appropriate NN 

that is comparable to the standard GARCH(1,1) model and its application 

in forecasting conditional variance of stock returns. Moreover, from the 

econometric perspective, NN models are used as a semi-parametric 

method that combines flexibility of nonparametric methods and the 
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1. INTRODUCTION  

For several decades market makers, portfolio managers, and 

option traders are all interested in forecasting return 

fluctuations in order to maximize their profits, and minimize 

their risks. Volatility is the name given to these return 

fluctuations. The relation between the market parameters and 

volatility is a very complex one. Black-Scholes pricing 

formula’s in their analytical simplicity determine the 

price of a European call options c, and puts p   on a 

non-dividend paying asset by  

 

� = ��(��) 	− �����(��)    (1) 

� = −��(−��) + �����(−��)    (2) 

with  

�� = ��� ���� + (� + ��
� )�� /�√� ,  

and   

�� = �� − �√�      (3) 

  

where N is the cumulative normal distribution, S is 

the price of the underlying security, K is the strike 

price, r is the prevailing risk-free interest rate, T is 

the time-to-maturity and σ is the volatility of the 

underlying asset. This model is helpful when some 

assumptions are fulfilled, and equations (1) - (3) do 

contain neither preferences of individuals nor the 

preferences of the aggregate market (Hull, 1993). For 

this reason nonparametric methods like artificial neural 

networks may be the most appropriate device to infer volatility 

from market observations. 

 

 

ANNs to Infer Volatility from Market Observations 

Forecasting (Sharda, 1994) in financial markets (Kuan, and 

Liu 1995; Zhang et. al. 1997; Bekiros, and Georgoutsos 2004; 

Chen, and Lai 2008; Samur, and Temur 2009; Wang et. al., 

2011; Arneric et. al., 2014) is one of the major application 

areas of ANNs. They are valuable for forecasting tasks since 

they are data-driven self-adaptive methods departing from the 

traditional model-based methods. As in the case of prices, 

returns, and the volatility of the market, while underlying 

relationships between market parameters are unknown or hard 

to describe, ANNs learn from examples, capture inherent 

functional relationships in the data, and generalize these 

relationships to the untouched test data.  

 

For this reason ANNs are well suited for problems whose 

solutions require analytic relations like Black-Scholes 

formulas. When these relations are difficult to specify, and 

when there are enough data or observations, ANNs are 

implemented as multivariate nonlinear nonparametric 

statistical methods (White, 1989; Ripley, 1993; Cheng and 

Titterington, 1994). In some situations ANNs provide the only 

feasible solutions to real-world problems.  

 

It has also been shown that a network can approximate any 

smooth function to any desired accuracy, hence they are  

universal functional approximators  (Irie and Miyake, 1988; 

Hornik et al., 1989; Cybenko, 1989; Funahashi, 1989; Hornik, 

1991, 1993). ANNs have more general and flexible functional 

forms than the traditional statistical methods can effectively 

deal with. Forecasting models assume that there exists an 

underlying relationship between the inputs in the forms of the 

past values of the time series, regressors, and other relevant 

independent variables, and outputs in the form of future 

values, and dependent variables. Traditional statistical 

forecasting models assume that the underlying relations are 

linear which cannot capture the complexity of the real system.  

 

There is no reason to assume a priori that a particular 

realization of a given time series, or an output data is 

generated by a linear process. Although in 1990’s, several 

nonlinear time series models are created, success of  these 

nonlinear models were limited since the explicit relationship 

for the data series at hand has to be hypothesized with little 

knowledge of the underlying mechanism.  

 

On the other hand, artificial neural networks, as nonlinear 

data-driven approaches, are capable of performing nonlinear 

modeling without a priori knowledge about the relationships 

between input and output variables.  

 

The first application the idea of using ANNs for forecasting 

dates back to 1964. Hu (1964), in his thesis, uses the 

Widrow’s adaptive linear network to weather forecasting. Due 

to the lack of a training algorithm for general multi-layer 

networks at the time, the research was quite limited. 

Backpropagation algorithm was introduced (Rumelhart et al., 

1986b) after that there had been much development in the use 

of ANNs for forecasting. Werbos (1974), (1988) first 

formulates the backpropagation and finds that ANNs trained 

with backpropagation outperform the traditional statistical 

methods such as regression and Box-Jenkins approaches. 

Lapedes and Farber (1987) conduct a simulated study and 

conclude that ANNs can be used for modeling and forecasting 

nonlinear time series. Weigend et al. (1990), (1992); Cottrell 

et al. (1995) address the issue of network structure for 

forecasting real-world time series. Tang et al. (1991), Sharda 

and Patil (1992), and Tang and Fishwick (1993), among 

others, report results of several forecasting comparisons 

between Box-Jenkins and ANN models. In a recent 

forecasting competition organized by Weigend and 

Gershenfeld (1993) through the Santa Fe Institute, winners of 

each set of data used ANN models (Gershenfeld and Weigend, 

1993).  
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The literature on ANNs for forecasting is vast and growing. 

Marquez et al. (1992) and Hill et al. (1994) review the 

literature comparing ANNs with statistical models in time 

series forecasting and regression-based forecasting. However, 

their review focuses on the relative performance of ANNs and 

includes only a few papers. In G. Zhang et al (1998), authors 

attempted to provide a more comprehensive review of the 

status of research in this area in their time.  

 

 

2. A BRIEF NOTE ON ANNS  

This brief presentation of artificial neural networks will focus 

on a particular structure of ANNs, multi-layer feedforward 

networks, which is the most popular and widely-used network 

paradigm in many applications including forecasting 

volatilities and prices in markets. For a general introductory 

account of ANNs, readers are referred to Wasserman (1989); 

Hertz et al. (1991); Smith (1993). Rumelhart et al. (1986a), 

(1986b), (1994), (1995); Lippmann (1987); Hinton (1992); 

Hammerstrom (1993); Haykin 1999 illustrate the basic ideas 

in ANNs.  

Hush and Horne (1993) summarize some theoretical 

developments in ANNs since Lippmann (1987) tutorial article. 

Masson and Wang (1990) give a detailed description of five 

different network models. Wilson and Sharda (1992) present a 

review of applications of ANNs in the business setting. Sharda 

(1994) provides an application bibliography for researchers in 

Management Science/Operations Research. A bibliography of 

neural network business applications research is also given by 

Wong et al. (1995). Kuan and White (1994) review the ANN 

models used by economists and econometricians and establish 

several theoretical frames for ANN learning. Cheng and 

Titterington (1994) make a detailed analysis and comparison 

of ANNs paradigms with traditional statistical methods.  

 

Basic structures of artificial neural networks, originally 

developed to mimic the human brain, are composed of a 

number of interconnected simple processing elements called 

neurons or nodes. Each node receives an input signal which is 

the total ‘‘information’’ from other nodes or external stimuli. 

The node processes incoming data locally through an 

activation function and produces a transformed output signal 

to other nodes or external outputs. Although each individual 

neuron implements its function rather slowly and imperfectly, 

collectively a network can perform a surprising number of 

tasks quite efficiently (Reilly and Cooper, 1990). This 

information processing characteristic makes ANNs a powerful 

computational device and able to learn from examples and 

then to generalize to examples never before seen.  

 

Many different ANN models have been proposed since 1980s. 

Perhaps the most influential models are the multi-layer 

perceptrons (MLP), Hopfield networks, and Kohonen’s self 

organizing networks. Hopfield (1982) proposes a recurrent 

neural network which works as an associative memory. An 

associative memory can recall an example from a partial or 

distorted version. Hopfield networks are non-layered with 

complete interconnectivity between nodes. The outputs of the 

network are not necessarily the functions of the inputs. Rather 

they are stable states of an iterative process.  

 

3. MULTI LAYER PERCEPTRONS FOR FORECASTING  

Especially in forecasting the MLP networks are used because 

of their inherent capability of arbitrary input–output mapping. 

Other types of ANNs are radial-basis functions networks (Park 

and Sandberg, 1991, 1993; Chng et al., 1996), ridge 

polynomial networks (Shin and Ghosh, 1995), and wavelet 

networks (Zhang and Benveniste, 1992; Delyon et al., 1995) 

are also very useful in some applications due to their function 

approximating ability.  

 

An MLP is composed of several layers of nodes. The the 

lowest layer is an input layer where external information is 

received. The last layer is an output layer where the problem 

solution is obtained. hidden layers separate the input layer and 

output layer. The nodes in adjacent layers are usually fully 

connected from a lower layer to a higher layer. Fig. 1 gives an 

example of a fully connected MLP with one hidden layer.  

 

 
 

Fig. 1. A typical feedforward neural network (MLP).  

 

 

For a forecasting problem, the inputs to an ANN are usually 

the independent variables. The functional relationship 

estimated by the ANN can be written as  

 

 = !("),				" = $%�, %�, … , %'(   (4) 

 

where $%�, %�, … , %'( is the vector of p independent variables 

and y is a dependent variable. In this sense, the neural network 

is functionally equivalent to a nonlinear regression model. On 

the other hand, for an extrapolative or time series forecasting 

problem, the inputs are typically the past observations of the 

data series and the output is the future value. The ANN 

performs the following function mapping  

 

 )*� = !(+),				+ = $ ) ,  )�, … ,  )'(  (5) 
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where yt is the observation at time t. Thus the ANN is 

equivalent to the nonlinear autoregressive model for time 

series forecasting problems. 

 

  

3.1 Multi-Layer Feed-Forward Networks (FNN) 

Multi-layer feed-forward networks (FNN) which forward 

information from the input layer to the output layer through a 

number of hidden layers. Neurons in a current layer connect to 

a neuron of the subsequent layer by weights and an activation 

function (Figure 1.a). In order to modify weights, the 

backpropagation (BP) learning algorithm is adopted. This 

iterative mechanism works by feeding the error back through 

the network. The synaptic weights are iteratively updated until 

there is no improvement in the error function. This process 

requires the derivative of the error function with respect to the 

network weights. The sum of squared error E is the 

conventional least square objective function in a NN, defined 

as:  

 

min/ 0��1�     (6) 

 

where 

 

0��1� = �
2∑ ( ) −  4))�2

)5�     (7) 

 

where  ) denote observed values of time series and   4) are 

fitted outputs.  

 

In forecasting time series, in general, alongside feed-forward 

neural networks there are a second type of ANNs which are 

called recurrent neural networks. 

 

FNNs in Figure 1 are highly non-parsimonious requiring an 

infinite amount of past observations as inputs to achieve the 

same accuracy in forecasting comparing to RNN. Moreover, 

in practical applications, recurrent neural networks provide a 

significantly better prediction than a feed-forward network.  

 

3.2 Recurrent Neural Networks (RNN) 

Financial time series mostly dependent nonlinearly on time 

and hence recurrent neural networks (RNN) are particularly 

useful. They are constructed by taking a feedforward network 

and adding feedback connections from output and/or hidden 

layers to input layers. The standard backpropagation algorithm 

also trains these networks conditional that patterns must 

always be presented in time sequential order. The one 

difference in the structure is that there are extra neurons in the 

input layer that is connected to the hidden layer and/or output 

layer just like the other input neurons. These extra neurons 

hold the contents of one of the layers as it existed when the 

previous pattern was trained. In this way, the network takes 

into account previous knowledge it has about previous inputs. 

These extra neurons are called the context unit and it 

represents the network’s long-term memory (Balkin 1997).  

 

There are three types of RNNs: Jordan, Elman, and 

Jordan/Elman recurrent networks. A Jordan neural network 

(JNN) has additional neurons in the input layer, which are fed 

back from output layer. While an Elman neural network 

(ENN) has additional neurons in the input layer, which is fed 

back from hidden layer. The mixture of the two, Jordan/Elman 

recurrent networks (JENN) has additional neurons in the input 

layer, which is fed back from hidden layer, and output layer. 

 

3.2.1 Jordan Recurrent Neural Networks (JNN) 

A Jordan neural network (JNN) has several feedback 

connections from the output layer to the input layer. The input 

layer has additional neurons, which are fed back from the 

output layer. Econometric interpretation of such feedback 

connection lies in the fact that in this way the model is 

expanded by lagged error terms (Figure 2).  

 

Using JNN, the problem of convergence can be solved by a 

more complex model. Although this network is more 

complicated than a multi-layer feed-forward network, the 

characteristics of feeding back data to the network are similar 

to a GARCH model, having the previous variance in current 

forecasts (Dechpichai, 2010).  

 

 
  

Figure 2. JNN with a single hidden layer representing a 

nonlinear ARMA(p,q) model  

 

 

3.2.2 Elman Recurrent Neural Network (ENN) 

Although properties of feedforward networks make them 

attractive econometric tools in nonparametric applications, in 

a dynamic context, it is natural to include lagged dependent 

variables as explanatory variables in a feedforward network to 

capture dynamics. Analogous to the problem of determining 

the order of an autoregression, this approach suffers the 

drawback that the correct number of lags needed is unknown. 

Hence, the lagged dependent variables in a network may not 

be enough to characterize the behavior of y in some 

applications. To overcome this deficiency, various recurrent 

networks, i.e. networks with feedbacks, have been proposed. 
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A recurrent network has a richer dynamic structure and is 

similar to a linear time series model with moving average 

terms. A recurrent network may capture more dynamic 

characteristics of y, than does a feedforward network.  

 

 
 

Figure 3. A simple Elman (1990) network with hidden-unit 

activations feedback to the input layer with delay and serve to 

'memorize' the past information. 

 

3.2.2 Jordan/Elman Recurrent Neural Network (JENN) 

The mixture of the two, Jordan/Elman recurrent networks 

(JENN) has additional neurons in the input layer, which is fed 

back from hidden layer, and output layer. 

 
Figure 4. A simple Jordan/Elman network with output and 

hidden unit activations feedback to the input layer with delay 

and serve to remember the past information. 

 

 

4. THE CONDITIONAL VARIANCE PROCESS  

The most popular models in modeling volatility are 

generalized autoregressive conditional heteroskedasticity 

(GARCH) type models which can account for excess kurtosis 

and asymmetric effects of high frequency data, time varying 

volatility and volatility clustering. The first autoregressive 

conditional heteroscedasticity model (ARCH) was proposed 

by Engle (Engle, 1982) who won a Nobel Prize in 2003 for his 

contribution to modeling volatility. The model was extended 

by Bollerslev (Bollerslev, 1986) by its generalized version 

(GARCH). However, the standard GARCH(1,1) model 

usually indicates high persistence in the conditional variance, 

which may originate from structural changes in the variance 

process. Hence, the estimates of a GARCH model suffer from 

a substantial upward bias in the persistence parameters. In 

addition, it is often difficult to predict volatility using 

traditional GARCH models because the series is affected by 

different characteristics: non-stationary behavior, high 

persistence in the conditional variance and nonlinearity. Due 

to practical limitations of these models, different approaches 

have been proposed in the literature, some of which are based 

on artificial neural networks (ANN).   

 

Neural networks are a valuable tool for modeling and 

prediction of time series in general (Balkin, 1997; Ghiassi, et., 

al, 2005; Kuan, and White 2007). Time dependence of most 

financial time series is nonlinear, that is, current values of the 

time series are nonlinearly conditioned on the information set 

consisting of all relevant information up to and including the 

period (Aminian, et. al., 2006; Gonzales, 2000; Hwarng,  

2001; Zhang, 2003). The feed-forward neural networks 

(FNN), i.e., multilayer perceptron, are most popular and 

commonly used. They are criticized in the literature for the 

high number of parameters to estimate and they are sensitive 

to over fitting (Franses, and van Dijk 2003; Lawrence, et. al., 

1997). A property added to recurrent networks feed-forward 

neural networks to allow feed-back form a cycle within the 

network architecture which can be analyzed as a nonlinear 

extension of traditional linear models, such as auto regressive 

moving average model ARMA. Recurrent neural networks 

(RNN) preserve long memory of the series and allow adequate 

forecasts of volatility with a smaller number of parameters to 

estimate (Balkin 1997; Dechpichai 2010). Therefore, recurrent 

neural networks are more appropriate than feed-forward neural 

networks in forecasting nonlinear time series.  

 

4.1 ARCH 

ARCH stands for autoregressive conditional heteroskedast-

icity. Changes in the scale of a variable give us the word 

heteroskedastic. A scale parameter is a standard deviation or a 

variance and the variable of interest here is the return from an 

asset. The variance of a return, conditional on the information 

in previous returns, is found to depend on this information. 

Engle (1982) defined a stochastic process whose variables 

have conditional mean zero and conditional variance given by 

a linear function of previous squared variables. The squared 

variables follow an autoregressive process in his pioneering 

and influential research. 

 

Subsequent research has provided many alternative functions 

that specify the conditional variance of a variable at time t as a 

function of information known at time t−1. For any specific-

ation that also gives us the conditional density function at time 

t, we will call the stochastic process an ARCH model provided 
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that the standardized residuals of the process are independent 

and identically distributed. In particular, we allow the 

conditional mean to vary though time; unlike some authors 

who prefer to restrict the acronym ARCH to processes whose 

conditional means are always zero. 

 

There is a multitude of ARCH specifications and many of 

them have their own acronyms, the best known being 

generalized ARCH, GARCH, from Bollerslev (1986) and 

exponential, generalized ARCH, EGARCH from Nelson 

(1991). The popularity of the models can be explained by their 

compatibility with the major stylized facts for asset returns, by 

efficient methods for estimating model parameters and by the 

availability of useful volatility forecasts. The specification of 

conditional densities provides the likelihood function for a 

dataset, which can be maximized to give optimal parameter 

estimates. Several software packages will maximize the 

likelihood function and thus estimation of an ARCH model is 

now a routine activity. Likelihood theory allows specifications 

to be compared and choices to be made from among the many 

functions that have been proposed for conditional variances. 

The literature on ARCH models is considerable. Bollerslev, 

Chou, and Kroner (1992) provide a review of theory and ten 

years of empirical evidence for financial markets, which 

covers applications to equities, foreign exchange, and interest 

rates. The authors describe an impressive number of 

interesting studies without requiring the reader to understand 

many equations. The subsequent survey by Bollerslev, Engle, 

and Nelson (1994) is suitable for those readers who wish to 

see more theory than is presented in this book. It also contains 

detailed examples of the specification of conditional densities 

for daily returns from US equity indices, going back as far as 

1885. A neglected precursor to the ARCH literature is a 

working paper by Rosenberg (1972), while early likelihood 

estimates of an integrated ARCH specification can be found in 

Taylor and Kingsman (1979). 

 

Some basic ARCH models and the general ARCH framework 

are described here. There are many applications of ARCH 

methods in finance research, including investigations into 

asset pricing, hedging, and microstructure effects. Option 

pricing, volatility forecasting, and density estimation are also 

important application areas. 

 

4.2 ARMA(p,q) 

The structure of RNN representing nonlinear ARMA(p,q) is 

comparable to the GARCH(p,q) model with appropriate lag 

selection.  JNN can be represented as  

 

    4) = 6 �78 + ∑ 79:
95� 	;$<89 + ∑ <9='

=5�  )= + >9?)�(� (8)  

  

where t is a time index,  4) is the output vector,  )= is the 

input matrix with t-j time lags, 6  and ; are activation 

functions . 78 denotes the constant term in the output layer,  

<89 denotes the constant term in the hidden layer. The weights  

<9= and  79 denote the weights for the connections between the 

inputs and hidden neurons and between the hidden neurons 

and the output, >9 denotes the weight for connections between 

the context unit and hidden neurons and ?)� denotes the 

difference between observed values of time series and fitted 

values of time series from the previous period. JNN with p 

inputs, q hidden neurons and one target unit has the 

abbreviation JNN(p,q,1) (Balkin, 1997).  

 

 To define appropriate JNN based on GARCH innovations we 

concentrate on a nonlinear version of ARMA(1,1) originated 

from equation (7):  

 

�̂)� = 6$78 + 7�;(<8 + <��)�� + >A4)�)( , 

	A4)� = �)�� − �̂)��     (9)  

     

In equation (8), function  6  is the linear activation function in 

the output layer and ; is a nonlinear activation function in the 

hidden layer, which processes information from the input layer 

to the output layer. A recurrent neural network in (8) assumes 

one neuron in a single hidden layer network, a nonlinear 

activation function in a hidden layer, i.e., a sigmoid, a linear 

activation function in the output layer, one squared 

innovations with one time lag as input, one current squared 

innovations as target, while the error term ?)̂� is added 

through feed-back connection from the output layer to the 

input layer.  

 

The parameters, 7�, <� and > are the called weights, while 78 

and <8 are the biases, that is constant terms of the hidden layer 

and output layer, respectively. These parameters are estimated 

from a training sample by minimizing the sum of the squares 

residuals of innovations using the gradient descent procedure 

known as “backpropagation” (BP). The network, which takes 

into account all assumptions above, can be presented as a 

Jordan neural network with memory.  

 

A Jordan net without memory “remembers” only the output 

from the previous time step. A Jordan net with memory 

remembers past values as an exponentially decaying weighted 

average of inputs, that is no outputs are forgotten; they just 

diminish away. The context unit is called a long-term memory 

unit in a RNN since it remembers past events. According to 

equation (7), there is only one context unit which accounts for 

a moving average structure of a time series.  

 

Many researchers rely on automatically chosen ANN provided 

by various software tools. But in this paper since ANNs are 

used as semi-parametric methods that combine flexibility of 

nonparametric models, with less restricted assumptions and 

the interpretability of synaptic weights, authors will rely on 

ANN architectures written in MATHEMATICA programming 

language by them. 

 

4.3 ARCH(1) 

The simplest example of an ARCH process is the ARCH(1) 

specification presented by Engle (1982). The distribution of 

the return for period t, conditional on all previous returns, is 

normal with constant mean µ and time-varying conditional 

variance ht defined by 
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ℎ) = C + 7(�)� − D)�. (10) 

 

The volatility parameters are ω > 0 and α > 0 (Taylor 2005). 

The volatility of the return in period t then depends solely on 

the previous return. Either a large positive or a large negative 

return in period t − 1 implies higher than average volatility in 

the next period when α is positive; conversely, returns near the 

mean level µ imply lower than average future volatility. 

The residual at time t is 

 

�) 		= 	 �) 	− 	μ     (11)	
 

and the forecast error when predicting squared residuals is 

 

A) 	= 	 �)� − ℎ)      (12) 

 

These forecast errors are uncorrelated. Replacing ℎ)  in (12) 

by �)� − A)   gives 

 

�)� = C + 7�)�� + A) 	    (13) 

 

and hence squared residuals follow an AR(1) process. This 

explains the AR part of the ARCH acronym. 

 

The ARCH(1) model is stationary when α < 1. Any 

satisfactory AR(p) process for squared residuals must have a 

high order p. A natural alternative is an ARMA process and 

this explains the interest in GARCH models. 

 

4.4 GARCH(1, 1) 

The GARCH(1,1) model with conditional normal distributions 

is the most popular ARCH specification in empirical research, 

particularly when modeling daily returns. The letter “G” 

appears in the acronym of this model because it is generalized 

from ARCH(1) by including a lagged variance term in the 

conditional variance equation. The popularity of GARCH(1, 

1) may be explained by three observations. First, the model 

has only four parameters and these can be estimated easily. 

Second, it provides an explanation of the major stylized facts 

for daily returns. Third, it is often found that the volatility 

forecasts from this specification have similar accuracy to 

forecasts from more complicated specifications. Initially, we 

assume conditional normal distributions following Bollerslev 

(1986) and Taylor (1986), who independently defined and 

derived properties of the GARCH(1, 1) model (Taylor 2005). 

 

The distribution of the return for period t, conditional on all 

previous returns, is normal with mean D, and variance ℎ)  
where 

  

ℎ) = C + 7(�)� − D)� + <ℎ)�.   (14) 

 

There are four parameters, namely µ, α, β, and ω. The 

constraints ω > 0, α > 0, and β > 0 are required to ensure that 

the conditional variance is never negative. The possibility α = 

0 is of no interest and so we assume α is positive. The model 

is styled GARCH(1, 1) because one previous squared residual 

and one previous value of the conditional variance are used to 

define the conditional variance for period t . Calculations of 

conditional variances from the recursive definition (14) are 

straightforward, providing an initial value is available for the 

first time period.  

 

The major properties of a GARCH(1,1) stochastic process can 

be summarized as follows. The process is stationary if α + β < 

1 and then 

•   The unconditional variance is finite; 

•   The unconditional kurtosis always exceeds three and can be 

infinite; 

•   The correlation between the returns rt and rt +τ is zero for all 

τ > 0; and 

 •  The correlation between the squared residual G) = (�) − μ)�  

and st+τ  is positive for all τ > 0 and equals C(α +β)
τ
, with C 

positive and determined by both α and β. 

 

 

5. RESEARCH METHODOLOGY AND RESULTS  

The data set consists of returns of the S&P100 index daily 

closing prices obtained from the S&P100 index website in the 

period from September 6, 2005 until June 7, 2016. However, 

for the long term forecasting for the purpose of this research, 

the first 1000 trade days of the data is neglected, and the 

remaining data is divided into two parts: the in-the-sample part 

consists of 1000 observations in the period from August 26, 

2009 until August 14, 2013 which is used for the training and 

the estimation of parameters in the GARCH(p,q), JNN(p,q,r), 

ENN(p,q,r)   and the EJNN(p,q,r,s) models; and the out-of-

the-sample part which consists of the 500 observations in 

period  from August 14, 2013 to August 10, 2015 which is 

used for the two years ahead forecasting purposes. To show 

that ANNs predict better for shorter term forecasts we also 

took in-the-sample part which consists of 500 observations in 

the period from August 8, 2011 until August 14, 2013 which is 

used for the training and the estimation of parameters, 250 

observations in period  from August 14, 2013 to August 8, 

2014 are used for the one year ahead forecasting. We have 

seen that the forecasting mean absolute percentage error MPE 

reduces below 10%. 

 

5.1. Forecasting by a Typical Feedforward Back Propagation 

Neural Network (MLP).  

 

Conditional volatility forecasted by GARCH(p,q) with several 

values of p, and q.  A typical feedforward back propagation 

neural network (MLP) is used with 5-10-20 neurons in one 

hidden layer (Figure 1). In Figure 5 the result is given for 

GARCH(10,10), target values are shown in blue, forecasted 

values are in purple. Absolute percentage error is 10.25%. To 

get these accuracies, 1000 trading days are used for training, 

and neural network successfully predicted the volatility of the 

next 250 trading days which is around a year. 

 

To forecast conditional volatilities by the model GARCH(p,q)  

typical feedforward back propagation neural networks (MLP) 

are used with p+q neurons in one hidden layer. Authors wrote 

the codes for MLPs, and they are run with optimum 

experimental learning rates. Learning rate is the rate used to 

update the synaptic weights. When the learning rate is too 
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large, the network may diverge. Therefore, an appropriate 

learning rate should be chosen from the interval [0,1]. In this 

paper, an adaptive approach is used to decide about the 

learning rates.   

 

 
 

Figure 5. One year ahead forecast of conditional volatility by 

the model GARCH(10,10) using a typical feedforward back 

propagation neural network (MLP) with 20 neurons in one 

hidden layer.. Target values blue, forecasted values purple. 

Absolute percentage error 10.25%. 

 

 

In this paper 3 MLPs are chosen to compute the conditional 

volatilities by the model GARCH(p,q). The results are 

presented in Table 1. Mean squared errors (MSE) of the 

training phase, and mean percentage absolute error of testing 

are calculated and presented for the train and for the out-of-

sample period.  

 

Table 1. Mean absolute percentage errors (MPE) in predicting 

volatilities in four years and one year future by various 

GARCH(p,q) models regarding different architectures.  

Forecast GARCH(5,5)   GARCH(10,10)   GARCH(20,20)   

2 years 16.40 16.86 16.19 

1 year 13.90 10.25 8.65 

 

 

5.2 Forecasting Conditional Volatility, Using JNNs 

In order to estimate the conditional volatility, the model 

GARCH(p,q) is used with r context neurons that are feedback 

from output. Therefore they are of JNN(p,q,r) model with 

several values of p, q, and r (Figure 2). In the sample, log 

returns of the S&P100 index daily closing prices are used for 

the calculation. The input for JNN is squared mean corrected 

returns with several time lags. In Figure 6, target values are 

shown in blue, forecasted values are in purple. To get these 

accuracies, 1000 trading days are used for training, and neural 

network successfully predicted the volatility of the next 500 

trading days with the given accuracies. 

 

 

 

 

 
 

Figure 6. One year ahead forecast of conditional volatility by 

JNN(10,10,10). Target values blue, forecasted values purple. 

Absolute percentage error 11.52%. 

 

 

Table 2. Mean absolute percentage errors (MPE) in predicting 

volatilities in four years and one year future by various. 

JNN(p,q,r) models regarding different architectures.  

Forecast 2 years % 1 year % 

JNN (3,3,2)   16.39 11.36 

JNN (5,5,5)   15.98 13.44 

JNN (10,10,10)   20.38 11.20 

JNN (20,20,20)   14.42 9.74 

JNN (30,30,2)   15.92 13.26 

 

 

5.3 Forecasting Conditional Volatility, Using ENNs 

In order to estimate the conditional volatility, the model 

GARCH(p,q) is used with r context neurons that are feedback 

from hidden layer. Therefore they are of Elman artificial 

neural network ENN(p,q,r) model with several values of p, q, 

and r (Figure 3). In the sample, log returns of the S&P100 

index daily closing prices are used for the calculation. The 

input for ENN is squared mean corrected returns with several 

time lags. In Figure 7, target values are shown in blue, 

forecasted values are in purple. To get these accuracies, 1000 

trading days are used for training, and neural network 

successfully predicted the volatility of the next 500 trading 

days with the given accuracies. 
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Figure 7. One year ahead forecast of conditional volatility by 

ENN(2,2,2,2). Target values blue, forecasted values purple. 

Absolute percentage error 15.14%. 

 

 

Table 3. MSE in training, and MPE in testing obtained from 

various ENNGARCH(p,q) models regarding different 

architectures.  

Future ENN(2,2,2,2)   ENN(5,5,5,5)   

2 years 12.51 20.41 

1 year 15.14 14.97 

 

5.4 Forecasting Conditional Volatility, Using JENNs 

In order to estimate the conditional volatility, the model 

GARCH(p,q) is used with r context neurons that are feedback 

from hidden layer, and s context neurons that are feedback 

from output. Therefore they are of JENN(p,q,r,s) model with 

several values of p, q, r, and s. In the sample, log returns of the 

S&P100 index daily closing prices are used for the 

calculation. The input for JENN is squared mean corrected 

returns with several time lags. In Figure 8 target values are 

shown in blue, forecasted values are in purple. To get these 

accuracies, 1000 trading days are used for training, and neural 

network successfully predicted the volatility of the next 500 

trading days with the given accuracies. 

 

 
 

Figure 8. One year ahead forecast of conditional volatility by 

JENN(10,10,10,5,1). Target values blue, forecasted values 

purple. Absolute percentage error 12.65%. 

 

 

Table 4. MSE in training, and MPE in testing obtained from 

various GARCH(p,q) models regarding different architectures.  

Future JENN(5,5,5,10,1)   JENN(10,10,10,5,1)   

2 years 19.80 17.14 

1 year 28.96 12.65 

 

 

 

6. CONCLUDING REMARKS  

The focus of the paper is the volatility forecasting of returns.. 

Paper begins with a brief introductory to artificial neural 

networks and its extension Jordan, and Elman recurrent 

networks. Then most widespread models of the volatility are 

discussed. In order to estimate the conditional volatility, the 

model GARCH(p,q) is used with r context neurons that are 

feedback from output (JNN), and/or hidden neurons (ENN, 

and JENN). In the sample, log returns of the S&P100 index 

daily closing prices are used for the calculation.  

 

The data set consists of returns of the S&P100 index daily 

closing prices obtained from the S&P100 index website in the 

period from September 6, 2005 until June 7, 2016. However, 

for the purpose of this research, the first 1000 trade dats of the 

data is neglected, and the remaining data is divided into two 

parts: the in-the-sample part consists of 1000 observations in 

the period from August 26, 2009 until August 14, 2013 which 

is used for the training and the estimation of parameters in the 

GARCH(p,q), JNN(p,q,r), ENN(p,q,r)   and the EJNN(p,q,r,s) 

models; and the out-of-the-sample part which consists of the 

500 observations in period  from August 14, 2013 to August 

10, which is used for the forecasting purposes. To show that 

ANNs predict better for shorter term forecasts we also took in-

the-sample part which consists of 500 observations in the 

period from August 8, 2011 until August 14, 2013 which is 

used for the training and the estimation of parameters, 250 

observations in period  from August 14, 2013 to August 8, 

2014 which is used for the one year ahead forecasting. We 

have seen that the forecasting mean absolute percentage error 

MPE reduces below 10%. 

 

 

Table 1-4 summarizes the prediction power of the method that 

consists of GARCH(p,q)  volatility model supported by 

ANNs. Mean absolute percentage error ranging from 12 to 20 

% is very promising. If the same accuracy prevails in the 

forecasting asset prices, it may be a very powerful prediction 

tool in the markets. 
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