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1. INTRODUCTION 
 

In studies of uncertain phenomena, several methods are 

employed. The two most widely used are random and fuzzy 

data approaches. They are typically described in terms of 

random and fuzzy distributions [4]. These two methods look 

at the uncertainty from different points of view. In literature 

one can find various terms for fuzzy data, such as 

possibilistic, soft, subjective, and similar [5], as opposed to 

random called probabilistic, hard, objective and the like. 

Historically, probability is defined in the co

physical measurement and mathematically in terms of 

probability axioms by Kolmogorov [1] where probability 

space, events and associated probabilities are defined. Related 

notion of random variables are defined in terms of mappings 

from probabilistic space of events to real line, carrying an 

underlying probabilities from the original event space. 

Indexing with some independent variable, such as time, one 

can define random processes as dynamic versions of random 

variables. On the other hand fuzzy, possibilistic approach 

relates to some intuitive uncertain notion (often of human 
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Abstract 

 

The objective of this paper is to present new and simple mathematical 

approach to deal with uncertainty alignment between fuzzy and random 

data. In particular we present a method to describe fuzzy (possibilistic) 

distribution in terms of a pair (or more) of related random (probabilistic) 

events, both fixed and variable. Our approach uses basic properties of 

both fuzzy and random distributions. We show that the data fuzziness can 

be viewed as a non uniqueness of related random events. 

how fuzzy-random consistancy principle can be given precise 

mathemtaical meaning. Various types of fuzzy distributions are examined, 

special cases  considered, and several numerical examples presented. 

 

 

 

 

 

 

 

 

 

In studies of uncertain phenomena, several methods are 

employed. The two most widely used are random and fuzzy 

data approaches. They are typically described in terms of 

random and fuzzy distributions [4]. These two methods look 

erent points of view. In literature 

one can find various terms for fuzzy data, such as 

5], as opposed to 

random called probabilistic, hard, objective and the like. 

Historically, probability is defined in the context of some 

physical measurement and mathematically in terms of 

probability axioms by Kolmogorov [1] where probability 

space, events and associated probabilities are defined. Related 

notion of random variables are defined in terms of mappings 

ilistic space of events to real line, carrying an 

underlying probabilities from the original event space. 

Indexing with some independent variable, such as time, one 

can define random processes as dynamic versions of random 

y, possibilistic approach 

relates to some intuitive uncertain notion (often of human 

nature) of an underlying uncertain event with some 

confidence (presumption) levels defined. In fuzzy data there 

is no reference, at least not directly, to any experiment o

measurement. It is more representation of our confidence 

level in an uncertain phenomenon. If a need arises to combine 

fuzzy and random data (such as in soft/hard data fusion 

applications) each distribution is typically handled 

individually for a specific problem at hand, and no rigorous 

mathematical methodologies exist for any meaningful 

uncertainty alignment between the two types of data. In a 

fundamental paper by Zadeh [2], a concept of possibilistic 

fuzzy distributions was introduced as opposed t

probabilistic distributions. The possibilistic distribution is 

shown to be equivalent numerically to fuzzy membership 

function typically used in fuzzy data description. In another 

classic reference [4], various algebraic operations on fuzzy 

data are elaborated in details, as well as the methods as how 

to combine fuzzy and random data in meaningful ways. One 

obvious and an add hoc method is to normalize random data 

distribution to unity and combine it with the fuzzy data. 

Mathematically correct in principle, this method can be 

The objective of this paper is to present new and simple mathematical 

approach to deal with uncertainty alignment between fuzzy and random 

data. In particular we present a method to describe fuzzy (possibilistic) 

f related random (probabilistic) 

events, both fixed and variable. Our approach uses basic properties of 

both fuzzy and random distributions. We show that the data fuzziness can 

be viewed as a non uniqueness of related random events. We also show 

random consistancy principle can be given precise 

Various types of fuzzy distributions are examined, 

special cases  considered, and several numerical examples presented.  

nature) of an underlying uncertain event with some 

confidence (presumption) levels defined. In fuzzy data there 

is no reference, at least not directly, to any experiment or hard 

measurement. It is more representation of our confidence 

level in an uncertain phenomenon. If a need arises to combine 

fuzzy and random data (such as in soft/hard data fusion 

applications) each distribution is typically handled 

ecific problem at hand, and no rigorous 

mathematical methodologies exist for any meaningful 

uncertainty alignment between the two types of data. In a 

fundamental paper by Zadeh [2], a concept of possibilistic 

fuzzy distributions was introduced as opposed to random and 

probabilistic distributions. The possibilistic distribution is 

shown to be equivalent numerically to fuzzy membership 

function typically used in fuzzy data description. In another 

classic reference [4], various algebraic operations on fuzzy 

ta are elaborated in details, as well as the methods as how 

to combine fuzzy and random data in meaningful ways. One 

obvious and an add hoc method is to normalize random data 

distribution to unity and combine it with the fuzzy data. 

in principle, this method can be 
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considered as a sort of uncertainty alignment from random to 

fuzzy data. Unfortunately the method is not practical because 

of loss of information in the process [4]. Also, in our opinion 

this method does not have any strong conceptual ground.  

Another approach is to define hybrid data which retains both 

fuzzy and random properties of original data. Two possible 

versions of the hybrid approach are described in [4]. First, 

one defines random fuzzy data where fuzzy distribution 

argument is “randomized” according to a probabilistic 

distribution density. Second, one can consider fuzzy random 

data where the value of random distribution density is 

fuzzified according to fuzzy data distribution [4]. Other 

methods have been considered as well. The subject of our 

paper is to consider fuzzy to random uncertainty alignment 

using very basic properties of both fuzzy and random 

distributions and associated probabilities. In our approach we 

use two step approach. First, we represent (decompose) fuzzy 

distributions via cumulative probabilistic distributions (CDF) 

instead of using probabilistic distribution densities (CDF 

derivative, which may not always exist). The immediate 

mathematical reason for that is the fact that cumulative 

random distributions are normalized to unity by the 

definition, just like fuzzy distributions. The other, conceptual 

reason, is that the possibilistic distribution resembles CDF 

more so than a distribution density. The second step uses 

basic probabilistic axioms whereas the CDFs are described in 

terms of some corresponding random event probabilities. For 

a unimodal fuzzy data the result is that the fuzzy distribution 

can be thought of as a combination of a fixed and a variable 

probability event. In the case of multimodal fuzzy data, this 

representation consists of a number of fixed and variable 

random events probabilities. We believe that our approach 

can bring about some interesting new avenues in treating 

fuzzy and random data, in particular in very important area of 

soft-hard (human-machine) data fusion. The paper is 

organized as follows. In Section 2 we briefly review basic 

probability results and related CDF definition and its 

properties. Section 3 summarizes important and related 

possibilistic (fuzzy) results including possibility theory 

axioms.  In Section 4 we introduce our main fuzzy to random 

uncertainty alignment arguments using standard triangular 

fuzzy distribution (TFN). We describe two related 

probabilistic steps which result in a combination of fixed and 

variable probability (non unique randomness) description of a 

fuzzy distribution. In Section 5 we formalize and prove two 

key results, namely (i) probabilistic decomposition of an n-

modal fuzzy distribution, and (ii) universal fuzzy to random 

uncertainty alignment law, which is also fuzzy presumption 

invariant. Section 6 presents additional fuzzy distribution 

examples to reinforce the applicability of our methodology. 

In Section 7 four numerical examples (symmetric TFN, non 

symmetric TFN, convex and non convex distributions) are 

presented showing fuzzy distributions in terms of fixed 

(unique) and variable (non unique) random events and related 

probabilities. The numerical results confirm our main results 

of Section 5. Conclusion and ideas for future work are given 

in Section 8. Finally, list of  key references is given at the end 

of the paper. 
 
 

2.  PROBABILITY, RANDOM VARIABLES   

     AND CUMULATIVE DISTRIBUTIONS 
 
 
2.1 Probability Theory 

In probabilistic (random experiments) we consider the 

occurrence of events (denoted by capital letters A, B) that 

are represented by sets. New events are obtained by 

combining old events, using proper set operations. Also, 

complex events can be expressed as combinations of a 

number of simple events. Sample space S is assumed to be 

a set of all possible (countable) outcomes of the random 

experiment, with the empty set O.  Venn diagrams are used 

for working with sets, as well as random events [1] The 

events of interest (A, A1, A2, etc.) are the subsets of S, and 

they are assigned certain probabilities P. In this section we 

summarize basic probability axioms [1]: 
 
                     0 ≤ P(A) ≤ 1,  P(S) = 1, P(O) = 0               

               P(A1UA2) = P(A1) + P(A2) – P(A1∩A2)            (1) 
 
and conditional probability formulas: 
 
           P(A1∩A2)=P(A1/A2)P(A2) =P(A2/A1) P(A1)         (2) 

 
When A1∩A2=0, then per the above axioms P(A1∩A2)=0, 

and we call two events A1 and A2 mutually exclusive. If  

A1UA2 = S and two events are mutually exclusive, then 

P(A1UA2) = P(A1) + P(A2) = 1, and we call A1 and A2 

complementary events, with P(A1) = 1 – P(A2) = P(A2
*) 

and the symbol * indicates complementary event. For any 

event A, the following holds: 
 
                                  P(A) + P(A

*
) = 1                            (3) 

 
If the events are independent, then we have: 
 

P(A1∩A2) = P(A1)P(A2) 

              P(A1/A2) = P(A1),  P(A2/A1) = P(A2)                 (4) 
 
Mutual exclusivity and independency do not imply each 

other. They would coincide in  a trivial case when one of 

the probabilities P(A1) or P(A2) is zero. 
 
2.2 Random Variables 
 
A random variable X(ξ)  is a function that assigns a real 

number, to each outcome ξ in the sample space S of a 

random experiment [1]. Let us assume that a subset A (an 

event) is given in the sample space S such that: 
 
                                 A={ξ: X(ξ) =B}                               (5) 

       
where B is a subset (an event) of real line R.  A and B are 

equivalent events with the same probability: 
 
                    P(XϵB) = P(A) = P({ξ: X(ξ) =B})                (6) 

 
Often a random experiment outcome is already the 

numerical value ξ we are interested in. Then we have X(ξ) 
= ξ. In general, a random variable X is a function from S to 

R with the property that the set Ax = {ζ: X(ζ) ≤ x} is in the 

set of events of interest in S, for every x. Hence we require 

every set Ax to have probability assigned to it. 
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2.3 Cumulative Random Distribution 
 
Consider a random experiment with sample space S and 

the subsets Ai called events of interest. Then related notion 

of the cumulative distribution function (CDF) of X is 

defined as: 
 
                FX(x) = F(x) = P(X ≤ x), - ∞ ≤ x ≤ + ∞            (7) 

 
which is a probability that  X has a value in the set (-∞, x], 

and hence it is a function of x. Note that (7) applies to both 

discrete and continuous random variables. We also recall 

that the distribution density, if exists, is defined as f(x) = 

dF(x)/dx, and its integral is equal to 1.  Figure 1 shows 

uniform distribution example. 

 
 

 
Figure 1. Uniform distribution 

 
The properties of F(x) are summarized as [1]: 

 

(i)  0 ≤ F(x) ≤ 1 

(ii)  lim x→∞ F(x) = 1 

(iii)  lim x→ - ∞ F(x) = 0 

(iv)  F(x) is a non decreasing function of x 

 i.e. for a ≤ b, F(a) ≤  F(b) 

       (v)           F(x) is continuous from the right 

                       i.e. for δ>0, F(b)=lim δ→0 F(b+δ)=F(b
+
) 

       (vi)          P(a < X ≤ b) = F(b) – F(a)         

                       P(a ≤ X ≤ b) = F(b) – F(a-)       

       (vii)         P(X = b) = F(b) – F(b
-
)          

       (viii)        P(X > x) = 1 – F(x)                                    (8) 
 
The properties (vi) through (viii) indicate probabilities of 

semi open interval, closed interval, and complementary 

event, respectively. As stated earlier, in this paper we deal 

with the cumulative rather than density functions, both for 

mathematical as well as conceptual reasons.  
 

3. POSSIBILITY, FUZZY VARIABLES AND  

    FUZZY DISTRIBUTIONS 
 

3.1 Possibility Theory 
 
Possibility theory was introduced and developed early on 

by Zadeh [2] as an extension of the theory of fuzzy sets, 

and in the context of information meaning, in particular in 

the context of semantic variables and human soft (fuzzy) 

data. Hence the possibility is associated with fuzziness, 

either due to lack of knowledge on which possibility is 

based, or related to the subset (event) for which possibility 

is asserted. Since its inception, possibility theory was 

developed further, either in the spirit of Zadeh, or in the 

axiomatic framework of Demster-Shafer’s Theory [3]. 

Another avenue is to view possibility as an upper 

probability bound, which allows study of possibility theory 

using the tools of imprecise probabilities. For the purposes 

of our paper, we limit ourselves to Zadeh’s approach, with 

the aim to connect the possibility theory with the 

probability theory via fuzzy and variable  random  

distributions. For the completeness sake we also 

summarize possibility axioms in the following section. 

Conceptually our approach appears to be similar to 

imprecise probability. The key difference is that we supply 

precise both lower and upper bounds on the “fuzziness” as 

opposed to just upper limit in the case of imprecise 

probability [6]. In our approach we explain the fuzziness 

as a non unique randomness. This approach came as a 

result of data fusion need in many relevant applications, 

where both hard data (objective, probabilistic, random, 

machine generated) measurements are obtained as well as 

a number of soft (subjective, possibilistic, fuzzy, human 

generated). In particular, possibility distribution  is defined 

by Zadeh [2] as a fuzzy restriction on the values that may 

be assigned to a variable. Similar to probability theory, 

possibility as an extension of fuzzy sets  is also based on 

set theory considerations. Say that A is a fuzzy subset of a 

universe of discourse S={ ξ } (similar to space of events in 

probability), then the statement such as a proposition “X is 

A”, and X takes values in S, induces a possibility 

distribution ΠX(ξ) which equates the possibility of X 

taking value ξ in S to the fuzzy membership function 

µA(ξ), i.e. the compatibility of ξ with A. Hence, ΠX(ξ) = 

µA(ξ). In doing so we define X as a fuzzy variable 

associated with the possibility distribution ΠX, similar to 

random variable associated with the probability in the 

original event space S. For the simplicity of the notation 

we will use Π(x) as the notation in this paper, with small x 

representing fuzzy variable X specific choice.  
 
3.2 Consistency Principle 
 
In the original Zadeh paper [2] there was no clarification 

as to the nature of the possibilistic vs. probabilistic 

distribution relationship, except for the “weak” connection 

between the two via his “consistency principle” defined as: 
 
            ΓX = ∑i=1,…,n PiΠi = P1Π1+ P2Π2+ …+ PnΠn         (9) 
 
where the variable X can be interpreted both as 

probabilistic and possibilistic, with the corresponding 

distributions consisting of the same number of choices in 

the interval of interest. The idea behind the consistency 

principle comes from an intuitive observation that reducing 

the possibility of an event tends to reduce its probability. 

The opposite may not hold. The problem with this 

definition is that it is not clear what do we do with the 

value ΓX. The original Zadeh’s idea for the consistency 

principle as given in (9) idea may be useful when 

possibility is known about X but not the probability. Our 

paper addresses that issue via uncertainty alignment idea. 

x 
   a          b                         a          b 

 

x 

1/(b-a) 

1 

F(x)  f(x)=dF/dx 
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In Section 5 we describe an alternative definition of 

consistency principle which better reflects “consistency” 

idea between random and fuzzy variable distributions. This 

definition also lends itself to a precise mathematical and 

quantitative treatment, and it can be of great use in 

decision making process where data is inherently soft and 

subjective. One particular area of interest is human-

machine (soft-hard) data fusion. In Section 5 we prove that 

the consistency  principle and “weak” connection can be 

clarified in a very precise mathematical way.  
 
3.3 Axiomatic Possibility Theory 
 
Following original work by Zadeh other researchers 

developed possibility theory idea further [3], [7], [8]. The 

following is a list of basic possibility axioms which are 

based on the original Zadeh work: 
 
                    0 ≤ Π(A) ≤1,   Π(S) = 1, Π(O) = 0             (10) 
 
where O is an empty set and S is a universe of discourse, a 

finite or countably infinite set, with all  subsets to which 

we can assign possibility measure Π(x). Note that in the 

context of Zadeh notion of possibility, these are all fuzzy 

sets which induce fuzzy restriction upon the values of the 

fuzzy variable. For any two fuzzy subsets A1 and A2 of S, 

we have: 
 
                      Π(A1UA2) = max[Π(A1),Π(A2)]              (11) 

                      Π(A1∩A2) ≤ min [Π(A1),Π(A2)]              (12) 
 

We note that the operations (11) and (12) are simpler than 

the corresponding probability operations in (2) and (3). In 

addition to possibility, there is a corresponding notion of 

necessity N(A) of a (fuzzy) event A [3]. For any A, A1 and 

A2 we have: 

N(A) = 1 -  Π(A*),   N(A) ≤ Π(A) 

N(A1∩A2) ≤ min [N(A1),N(A2)] 

   Max[Π(A1),Π(A2)] = 1 

   Min[N(A1),N(A2)] = 0 

   N(A) + N(A*) ≤ 1 

                                  Π(A) + Π(A
*
) ≥ 1                         (13) 

 

In a follow up work we will investigate how the two sets 

of axioms, probability and possibility, are related in a view 

of fuzzy to random (possibilistic to probabilistic), 

uncertainty alignment approach of this paper. 
 

4. POSSIBILISTIC TO PROBABILISTIC    

    UNCERTAINTY ALIGNMENT 
 
We proceed by considering a typical triangular fuzzy 

distribution number (TFN) given in Figure 2 with the 

interval of interest [a,b,c] for any a, b and c, and the 

corresponding possibilistic distribution Π(x) numerically 

equivalent to the fuzzy membership function µ(x) [2]. At 

this point we will not write equations of the segments of 

the distribution Π(x). This will be done in Section 7 with 

numerical examples. We want simply to illustrate the 

approach in the simplest possible way, for conceptual 

reasons. Note that our approach can be applied to any other 

fuzzy variable, unimodal or multimodal, symmetric or not, 

normal or non normal, convex or non convex, trapezoidal 

or arbitrary shaped fuzzy distribution. The key is that the 

cumulative function properties given in (8) are satisfied. 

Section 6 shows additional examples of fuzzy 

distributions. Next step is to define a pair of CDFs such as 

in Figure 1 to “decompose” Π(x):  
 
                               Π(x) = F1(x) – F2(x)                         (14) 

 
where F1 and F2 are shown in Figure 3 bellow. They both 

satisfy properties given in (8), and both indicate uniform 

probabilistic distributions. Note that if the TFN is not 

normalized in Figure 2, that would not pose any problem 

for the decomposition. Namely F1 and F2 would have 

corresponding jumps extending to 1, per properties  (v) - 

(vii)  given in  (8),  to  satisfy  the conditions of continuity 

 
 

 
Figure 2. Triangular fuzzy number (TFN) 

 

 

 
Figures 3. Cumulative functions F1 and F2 

 

and their maximum at 1.  At this point we have to take 

another “probabilistic” step to refine the decomposition 

(14). We note that the cumulative function F is defined in 

terms of a random event probability given in (8). Next we 

recall (2) in Section 2.1 which relates  probabilities of 

some events  A1  and  A2,  the subsets of  a certain event S.  

x 
a             b             c 

x 
a             b             c 

x a             b             c 

1 

Π(x) = µ(x) 

1 

1 

F1(x) 

F2(x) 
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Let us rewrite (2) as follows: 

 
                P(A1) – P(A1∩A2) = P(A1UA2) – P(A2)         (15) 

 
Each side of the Equation (15) satisfies basic probabilistic 

axioms in (1). The nice property of (15) is that both sides 

have negative terms, as does Equation (14). We proceed 

with two cases: 
 
Case 1. First we equate left side of (15) with (14):  
 
            Π(x) = F1(x) – F2(x) = P(A1) – P(A1∩A2)          (16) 
 
where the event A1 uniquely corresponds to the form given 

in (7), i.e. A1={X ≤ x}={ζ: X(ζ) ≤ x} for a random 

experiment ζ. The event A1∩A2 and A2 are to be 

determined. The two cumulative distributions are uniquely 

defined as:  
 
               F1(x) = P(A1),  F2(x) = P(A1∩A2)            (17) 
 

(Figure 3). What is not uniquely determined is the event A2 

because different A2 can produce the same sets intersection 

A1∩A2. Note that we assume  that the random variable X 

can be interpreted both as a probabilistic (random) as well 

as possibilistic (fuzzy) variable. In Zadeh paper [2], the 

same assumption was made in terms of his “consistency” 

principle. The assumption makes sense for we are looking 

to analyze and uncertainty align related possibilistic and 

probabilistic distributions, or “consistent” ones. To further 

clarify the event A2, a little reflection on the set theory 

(Venn diagram,  Figure 4), the fact that A1 and A2 are the 

subsets of S, plus our interest in the intersection A1∩A2, 

brings us to the following condition on P(A2): 
 
                         P(A1∩A2) ≤ P(A2) ≤ 1 - Π(x)                (18) 
 
producing the same intersection P(A1∩A2), and the right 

hand side 1 – Π(x) = Π*(x) represents a complementary 

fuzzy distribution to Π(x), which upholds the last 

condition in (13) with the equality sign, due to 

probabilistic interpretation in (14) and (3). Figures 5 

summarize  P(A2)  bounds  given in (18),  using  P(A1∩A2) 

 

 
Figure 4. Venn diagram for two sets A1 and A2 

 

in Figure 3. The gray area in P(A2) indicates non unique 

choices for the event A2 and the probability P(A2). Few 

possible choices are indicated by solid lines. They will all 

generate the same F2 = P(A1∩A2). Note that the grey (non 

unique A2) area corresponds to x < b, while A2 is uniquely 

defined for b ≤ x, due to a simultaneous action of 

conditions in (18). One can consider the interplay of 

unique  P(A1) and non unique   P(A1∩A2),  i.e. P(A2),  

equivalent  to  “fuzziness” of the left hand side of Π(x), 

when x < b, Figure 2. In the next subsection we consider 

Case 2 which will have the same effect on the right hand 

side of Π(x).  
 
Case 2. In this case we equate right side of (15) with (14) 

and write: 
 
             Π(x) = F1(x) – F2(x) = P(A1UA2) – P(A2)         (19) 

 
where the event A2 uniquely corresponds to the form given 

in  (8), i.e.  A2 = {X ≤ x} = {ζ: X(ζ) ≤ x}  for  a random 

experiment ζ. The event A1UA2 and A1 are to be 

determined. The two cumulative distributions are uniquely 

defined as: 

                    F1(x) = P(A1UA2),  F2(x) = P(A2)               (20) 
 

Note that the forms of F1 and F2 are same as before (Figure 

3), but we interpret them differently, i.e. as  P(A1UA2) and 

P(A2) respectively.  Now event A1 is not  uniquely  

determined  because  different A1 can produce the same 

sets unions A1UA2. As in the Case 1, we  assume   that  the  

random  variable  X can be  interpreted both  as  a  random 

 

 

 
           Figures 5. Case 1: Bounds on P(A2) 

 
(probabilistic) as well as fuzzy (possibilistic) variable. To 

further clarify  A1, we use Figure 4, and consider union 

A1UA2, which produces the following condition on P(A1): 
 

                  Π(x) ≤ P(A1) ≤ P(A1UA2)                     (21) 
 

Figures 6 summarize P(A1) bounds given in (21), and 

using P(A1UA2) in Figure 3. The gray area in P(A1) 

x a             b             c 

x  a            b             c 

A1 

A2 

A1∩A2 

1 

1 
P(A2) 

Π*
(x) = 1 - Π(x) 
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indicates its non unique choices. Possible choices are 

indicated by solid lines. They will all generate the same 

F1=P(A1UA2). Note that the grey area corresponds to b ≤ 

x, while P(A1) is uniquely defined for x < b, due  to a 

simultaneous action of conditions (21). As in the Case 1, 

one can consider that the interplay of unique  A2  and 

P(A2) and non unique A1 and P(A1UA2) is equivalent to 

“fuzziness” of the right hand side of Π(x), when b≤ x, 

Figure 2.  By combining Case 1 and Case 2, we conclude 

that non unique choices for A1 and A2 and their 

corresponding probabilities P(A1) and P(A2), correspond to 

the non zero part of the distribution  Π(x). Outside of  that, 

when Π(x)=0, they can be considered independent or 

exclusive  for the trivial  (limiting)  cases  of   probabilities 

 

 

 
Figures 6. Case 2: Bounds on P(A1) 

 
0 or 1. In a conclusion, the fuzzy distribution Π(x) is 

generated by an action of random events A1 and A2, with 

respective probabilities P(A1) and P(A2), which switch 

between unique and non unique depending of the fuzzy 

argument x, per Table 1, where we used the notation 

P1=P(A1) and P2=P(A2). Note that the non zero Π(x) 

corresponds to the gray shaded areas in Table 1. 
 
       Table 1. Π(x) in terms of random events A1 and A2 

x A1 A2 A1  vs.  A2 

0 ≤ x < a Unique 

P1 = 0 

Non 

unique 

0 ≤ P2 

≤ 1 

Exclusive  

(P1=0,P2=1) 

      Independent         

       (P1=P2=0) 

a ≤ x < b Unique Non 

unique 

Π = P1  

P1+P2 ≤ 1 

b ≤ x < c Non 

unique 

Unique Π = 1 – P2 

P1+P2 ≤ 1 

c ≤ x Non 

unique 

0 ≤ P1 ≤ 1 

Unique 

P2 = 1 

Exclusive  

(P1=0,P2=1) 

Independent 

(P1=P2=1) 

 
 

 

 

 

 

 

 

 

 

Figure 7. Bi modal TFN 

5. MAIN RESULTS 
 

In this section we summarize Section 4 results in the form 

of two Theorems and two Corollaries. Various types of 

fuzzy distributions, other than TFNs, can be handled by 

our approach. These distributions can be non convex, non 

normalized, and of various other shapes, symmetric and 

non symmetric, both unimodal and multimodal. Figure 7 

shows a bi modal fuzzy distribution consisting of a pair of 

TFNs. In this case the decomposition of Π(x) consists of a 

two pairs of cumulative probabilistic distributions: 
 
                 Π(x) = F1(x) – F2(x) + F3(x) – F4(x)              (22) 

 
or in terms of probabilities, extending (16), (17), (19) and 

(20) to bi modal case: 
 

         Π(x) = P(A1)–P(A1∩A2)+P(A3)–P(A3∩A4) 

                     = P(A1UA2)–P(A2)+P(A3UA4)–P(A4)       (23) 
 

By an induction extension of (22), for a “n” modal TFN 

we have the following general result: 
 
Theorem 1. Fuzzy n-modal distribution function Π(x) can 

be decomposed as a difference of sums of probabilistic 

cumulative distributions: 

                              Π(x) = ∑ Fi(x) – ∑ Fj(x)                   (24) 
 

with i = 2k-1, j=2k, k = 1,2,…,n,   where the odd functions 

amount for rising portion of fuzzy distribution and even for 

the falling portion.  In terms of probabilities, by the 

extension of (24) we have the following: 
 
Corollary 1.  Fuzzy n-modal distribution function given in 

Theorem 1 can be further expressed as a difference of 

sums of probabilities: 
 

x 
  a1    b1          c1      a2   b2   c2 

x 
a             b             c 

x 

 a            b             c 

1 
Π(x) 

P(A1UA2) 

P(A1) 

1 

1 
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                        Π(x) = ∑ P(Ai) – ∑ P(Ai ∩Aj)               

                                 = ∑ P(AiUAj) – ∑ P(Aj)                (25) 
  
with i = 2k-1 and j = 2k, k = 1,2,…,n.  Using (24) and (25), 

as well as (18) and (21), we now state the following key 

result which relates a fuzzy distribution and a set of 

changes in variable exclusive event probabilities.  
 
Theorem 2. Any multimodal fuzzy distribution Π(x) can 

be expressed in terms of the following fuzzy presumption-

invariant and x-invariant universal fuzzy-random 

uncertainty alignment law: 
 
             Π(x) + ∑∆P(Ai) + ∑∆P(Aj) = 1, for any x        (26) 
   
with i = 2k-1, j=2k, k = 1,2,…,n, where  the range in 

probability is ∆P(Ak) = P(Ak)M – P(Ak)m  per (18), “M” is 

for maximum, “m” is for minimum value. For simplicity, 

we did not burden the notation with stating dependency of 

∆P’s on x. The key feature of Theorem 2 is that it holds for 

any x and any presumption level of Π(x).  We prove the 

case when n=1, for TFN in Figure 2.  The proof for any n 

and any Π(x) is straightforward. From (17), (18) and (21) 

we obtain: 
 
Case 1 (x < b)                                                                 (27) 

                                          P(A1)m = P(A1)M 

           ∆P(A1) = P(A1)M – P(A1)m = 0 

                                          P(A2)M = 1 -  Π(x) 

                                          P(A2)m = 0 

           ∆P(A2) = P(A2)M – P(A2)m = 1 – Π(x) 
 
Case 2 (b ≤ x):                                                                (28) 

                                          P(A1)m = Π(x) 

                                          P(A1)M = 1 

           ∆P(A1) = P(A1)M – P(A1)m = 1 – Π(x) 

                                          P(A2)m = P(A2)X 

           ∆P(A2) = P(A2)X – P(A2)m = 0 
 
Note that the point “b” is a middle (max) point of a TFN, 

or any other unimodal fuzzy distribution. Replacing (28) 

and (29) into (26), for n=1, we obtain: 
 
                        Π(x) + ∆P(A1) + ∆P(A2) = 1                  (29) 
 
which holds across the full range of argument x. Another 

form of the Equation (29) is: 
 
                      Π(x) = 1 – [∆P(A1) + ∆P(A2)]                  (30) 

                               = 1 – Π*
(x) 

where: 

                           Π*
(x) = ∆P(A1) + ∆P(A2)                    (31) 

 
represents fuzzy complement to Π(x), assuming equality in 

the last condition in (13). One can interpret this result as 

the “randomness” pool left to form fuzzy distribution to a 

random certainty. This also means that for higher 

“presumption” levels, near 1, corresponding randomness 

pool is smaller (less uncertainty to adjust) and for lower 

“presumption” levels it is larger (more uncertainty to 

adjust). Examples in Section 6 and Figures 9 show that 

clearly. We have the following result based on Theorem 2: 
 

Corollary 2.  Any fuzzy distribution derivative dΠ(x)/dx 

can be expressed for any argument x as a universal fuzzy-

random uncertainty change law: 
 
           dΠ(x)/dx+∑d[∆P(Ai)]/dx+∑d[∆P(Aj)]/dx=0      (32) 
 
and i = 2k-1, j=2k, k = 1,2,…,n. For n=1, we have 
 
          dΠ(x)/dx + d[∆P(A1)]/dx + d[∆P(A2)]/dx = 0     (33) 
 
Due  to  the  fact  that  the  changes  in  two  probabilities  

∆P(A1) and ∆P(A2)  are  not zero at different arguments x 

(Cases 1, 2), (33) reduces to a very simple fact: 
 
                             dΠ(x)/dx = - d[∆P(Ai)]/dx                 (34) 
 
where ∆P(Ai) corresponds to either ∆P(A1) for i=1, or to 

∆P(A2) for i=2, depending on x value. Simply stated, (34) 

says that the change in fuzzy distribution is the opposite of 

random probability change. This is also clearly confirmed 

in Section 6 with four numerical examples, and Figures 9. 
 
Consistency principle. Referring back to Zadeh 

“consistency” principle [2], as given in (9) for an unimodal 

fuzzy distribution, one can re interpret it in the light of our 

Theorem 2 which holds for any multimodal fuzzy 

distribution, any presumption level and any argument x, 

and it has a clear (conceptual and numeric) message, not 

only intuitive rationale as in [2]. We can consider it as a 

“fuzzy-random uncertainty balance principle” and it can be 

used instead of “consistency principle” given in (9). 

Another view of the principle could be given in a slightly 

changed definition instead of (9), where instead of 

multiplying Pi  and Πi, we use the sum of ∆Pi and Πi in the 

spirit of Theorem 2, where “i” now points to a different x, 

that is xi : 
 
                           ΓX = ∑i=1,…,n(∆Pi + Πi) = n                   (35) 

 
Now the consistency principle has a definite numerical 

meaning as well. Note that ∆Pi  is either ∆P1 or  ∆P2 for 

they are never different than zero at the same time. 
 
 
6. OTHER FUZZY DISTRIBUTIONS 

  
Figures 8  show  other  types  of  fuzzy distributions which 

can be handled by our approach. The first one is a 

trapezoidal distribution which can be decomposed using a 

pair of CDFs. The second one is a bimodal and a 

combination of two distributions put together (gray area 

can belong to either). It can be decomposed by using two 

pairs of CDFs. The next one is a convex distribution with 

the maximum at “b”. It can be decomposed by a pair of 

CDFs, with the break at “b”. The last one is a concave 

example. First two fuzzy distributions consist of uniform 

random distributions, and the last two are not uniform. In 

Section 6 we  show four numerical examples, two uniform, 

two non uniform. In every case the continuity conditions 

given in (8) must be observed when Π(x) is expressed in 

terms of Theorem 1.  
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Figure 8. Other fuzzy distributions 

 
7.  NUMERICAL EXAMPLES 

 
In this section we consider four numerical examples which 

illustrate the main results of the paper.  Figure 2 and 

Equation (14) give a simple TFN decomposition with the 

CDFs as follows:  
 
                     F1(x) =   0,        x < a 

                              =   (x – a)/(b-a),  a ≤ x < b 

                              =   1,        b ≤ x 

                     F2(x) =   0,        x < b 

                              =   (x – b)/(c-b),  b ≤ x < c 

                              =   1,        c ≤ x                                  (36) 
 
Recall that F1 and F2 are equal to various probabilities as 

described for Case 1 and Case 2. We now look at couple of 

different examples. 
 
Example 1. Let us assume that the triplet [a, b, c] in Figure 

2 is [1,2,3]. This corresponds to a symmetric TFN. Table 1 

shows specific values for x and the corresponding fuzzy 

“presumption” levels for Π(x).  The gray areas show Π(x) 

and ranges for P(A2) and P(A1), calculated according to 

equations (18) and (21).  For Case 1, the probability P(A1) 

is fixed and unique for a fixed x. On the other hand, the 

probability P(A2) is not unique and P(A2) resides in a 

range given in (18). Table 1 indicates that as well. We 

observe that for small values of Π(x) (low level of fuzzy 

“presumption”)  the corresponding range of P(A2) is wider 

(more uncertainty), and for bigger values of Π(x) (high 

fuzzy “presumption” level),  range of P(A2) is narrower 

(less uncertainty). This makes perfect intuitive sense as 

well. We have  the same situation for Case 2, except that 

the non unique probability is now P(A1).  
  

Table 1. Example 1 

x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

0.5 0 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 1 

1.2 0.2 0 0.2 0.2 0.2 0 0 0.8 0.8 

1.4 0.4 0 0.4 0.4 0.4 0 0 0.6 0.6 

1.6 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

1.8 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

2 1 0 1 1 1 0 0 0 0 

2.1 1 0.1 0.9 1 0.9 0.1 0.1 0.1 0 

2.2 1 0.2 0.8 1 0.8 0.2 0.2 0.2 0 

2.3 1 0.3 0.7 1 0.7 0.3 0.3 0.3 0 

2.5 1 0.5 0.5 1 0.5 0.5 0.5 0.5 0 

2.7 1 0.7 0.3 1 0.3 0.7 0.7 0.7 0 

3 1 1 0 1 0 1 1 1 0 

3.5 1 1 0 1 0 1 1 1 0 
 

Example 2. We now change the triplet [a,b,c] in Figure 2 

to [5,10,20]. This corresponds to a non symmetric TFN 

with a larger spread of x. Table 2 has the corresponding 

numerical values. The same comments apply as in 

Example 1. Note that the values of Π(x) and probability 

ranges ∆P(A) are equivalent to Example 1 (confirming x-

and fuzzy presumption invariance).  
 
Example 3. For Example 3 we choose a fuzzy distribution 

described by a half circle with the triplet  [a,b,c] = [1,2,3]  

where   “b” is at  the  circle center on  x  axis,  with  the 

radius 1, and outside of [1,2,3] distribution is 0. For 1 ≤ x 

< 3: 

                             Π(x) = √[1 – (x – 2)
2
]                        (37) 

 
Table 3 has the results. Note that the values of Π(x) are not 

linearly  (uniformly) distributed, as is the case in Examples 

1 and 2. The distribution changes the fastest immediately 

right from x=1 and left from x=3, as in Table 3. 
 
Example 4.  Final example deals with a fuzzy distribution 

similar to the last diagram in Figure 8. We will implement 

it by two quarter circles, of radius 1, centered at (1,1) and 

(3,1) as follows: 

                       Π(x) = 1 - √[1 – (x – 1)2],    1 ≤ x < 2 

                           = 1 -  √[1 – (x – 3)
2
],        2 ≤ x < 3     (38) 

x 

    a           b            c  

x 

   a     b                   c  

x 

  a1      b1              c1      a2    b2    c2 

Π(x) 

x 

   a      b                c       d   

1 

1 

1 

1 

Π(x) 

Π(x) 

Π(x) 
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Table 2. Example 2 

x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

4 0 0 0 0 0 0 0 1 1 

5 0 0 0 0 0 0 0 1 1 

6 0.2 0 0.2 0.2 0.2 0 0 0.8 0.8 

7 0.4 0 0.4 0.4 0.4 0 0 0.6 0.6 

8 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

9 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

10 1 0 1 1 1 0 0 0 0 

12 1 0.2 0.8 1 0.8 0.2 0.2 0.2 0 

14 1 0.4 0.6 1 0.6 0.4 0.4 0.4 0 

16 1 0.6 0.4 1 0.4 0.6 0.6 0.6 0 

18 1 0.8 0.2 1 0.2 0.8 0.8 0.8 0 

20 1 1 0 1 0 1 1 1 0 

25 1 1 0 1 0 1 1 1 0 
 
 

Table 3. Example 3 

x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

.5 0 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 1 

1.2 0.6 0 0.6 0.6 0.6 0 0 0.4 0.4 

1.4 0.8 0 0.8 0.8 0.8 0 0 0.2 0.2 

1.6 0.9 0 0.9 0.9 0.9 0 0 0.1 0.1 

1.8 .98 0 .98 .98 .98 0 0 0.02 0.02 

2 1 0 1 1 1 0 0 0 0 

2.2 1 0.6 .98 1 0.98 0.02 0.6 0.6 0 

2.4 1 0.8 0.9 1 0.9 0.1 0.8 0.8 0 

2.6 1 0.9 0.8 1 0.8 0.2 0.9 0.9 0 

2.8 1 .98 0.6 1 0.4 0.4 .98 .98 0 

3 1 1 0 1 0 1 1 1 0 

3.5 1 1 0 1 0 1 1 1 0 
 
 

Table 4. Example 4 

x F1 F2 Π P1M P1m ∆P1 P2m P2M ∆P2 

.5 0 0 0 0 0 0 0 1 1 

1 0 0 0 0 0 0 0 1 1 

1.2 .02 0 .02 .02 .02 0 0 .98 .98 

1.4 .08 0 .08 .08 .08 0 0 .92 .92 

1.6 .2 0 .2 .2 .2 0 0 .8 .8 

1.8 .4 0 .4 .4 .4 0 0 .6 .6 

2 1 0 1 1 1 0 0 0 0 

2.2 1 .02 .98 1 .98 .02 .02 .02 0 

2.4 1 .08 .92 1 .92 .08 .08 .08 0 

2.6 1 .2 .8 1 .8 .2 .2 .2 0 

2.8 1 .4 .6 1 .6 .4 .4 .4 0 

3 1 1 0 1 0 1 1 1 0 

3.5 1 1 0 1 0 1 1 1 0 

 

         Figures 9:  Π(x) vs ∆P(x), and dΠ/dx vs d(∆P)/dx 
 

Note that the values of Π(x) in Example 4 are not linearly 

distributed,  as expected,  and  that  the distribution 

changes faster for values near x=2, on both sides. Table 4 

confirms that observation.  
 

Based on the Examples presented, and the key results in 

Section5, we have the two diagrams in Figure 9. The first 

diagram shows how Π(x) changes with ∆P, for any fuzzy 

distribution. This is simple consequence of Theorem 2 and 

presumption and x-invariant nature of it. The second 

diagram in Figure 9 indicates the relationship between 

dΠ/dx and d(∆P)/dx, based on Corollary 2. The diagrams 

are universal for any distribution Π(x). 
 

Theorem 2 and Corollary 2 are confirmed numerically in 

all the examples. The Equations (36)-(38) or any other 

form of Π(x), with their derivatives for the density 

functions, if they exist, indicate how to practically generate 

fuzzy distributions out of corresponding non unique 

random distributions, as well as how to do uncertainty 

alignment for a specific case at hand.  

 

8.  CONCLUSION 
 

In this paper we define new fuzzy to random uncertainty 

alignment methodology, in which fuzziness can be 

described as non unique randomness. We employ the most 

basic properties of random and fuzzy distributions for this 

result and give precise both upper and lower bounds of 

changes in random distributions, required to produce data 

fuzziness. The range of randomness of the corresponding 

probabilistic events is a function of fuzzy distribution 

presumption level and it holds fo any fuzzy distribution. 

The main results can be considered as an universal fuzzy-

random (possibilistic-probabilistic) uncertainty alignment 

law which is fuzzy presumption-invariant  and fuzzy 

argument x invariant for any given distribution. The result 

can be employed effectively in a variety of data fusion and 

decision problems where both objective (hard, random, 

∆P(x) 

Π(x) 

1 

1 

dΠ/dx 

d(∆P)/dx 
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probabilistic, sensor based) data are to be fused with 

subjective (soft, fuzzy, possibilistic, human based) data 

[9], [10]. One way to interpret the results is as a precise 

mathematical description of fuzzy-to-random “consistency 

principle” first introduced by Zadeh in his classic paper 

[2], as a loose and intuitive notion.  In a future work we 

will extend the results in specific areas such as machine-

human data fusion. Also, further properties of both random 

and fuzzy data will be analyzed in the light of the paper’s 

main results. In particular we will consider relationship 

between probabilistic and possibilistic axioms in the light 

of this paper results. 
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