
 

 

Southeast Europe Journal of Soft Computing

Available online: 

VOL5 NO. 1 March

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Support Vector Machines for Predicting Protein Structural Classes

Images Derived From Amino Acid Sequences
 

Betul Akcesme 

Mehmet Can 

International University of Sarajevo 

Faculty of Natural Sciences and Engineering

Hrasnicka Cesta 15, Ilidza 71210 Sarajevo, BIH

bcicek@ius.edu.ba; mcan@ius.edu.ba; 

 

 

 

 

 
Article Info 

Article history: 

Article received on February 2015 

Received in revised form March 

2015 

 

 

Keywords: 

Support vector machines, protein 

structural classes, class prediction

 

1. INTRODUCTION  

Support Vector Machine (SVM) is one type of learning 

machine based on statistical learning theory which has 

been relatively recently introduced to the field (Vapnik 

1995). SVMs have been applied to solve a variety of 

problems in the field of bioinformatics such as gene 

function analysis, microarray expression data (Brown et al 

2000), protein secondary structure prediction (Hua and 

Sun 2001), protein fold recognition (Ding and Dubchak 

2001),  and cancer tissue classification from microarray 

expression data (Mukherjee et al 1999). Since the first 

application of SVM for prediction of protein structural 

classes (Cai et al 2001) it has gained popularity in a wide 

range of studies. The way of SVM basically performs its 
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Abstract 

SVM is one of the most widely used and powerful classification

algorithms to predict protein structural classes.  Via radial base functions, 

SVM maps the linearly non separable input data to a higher dimensional 

space where it is almost separable by a hyperplane

training data, six hyperplanes that separate pair wise

training data are constructed. Then the expertise of these six SVMs 

genuinely aggregated to classify the testing data into four classes

validation is performed by a boot strap technique. The 33 dimensional 

data that represents proteins of the data set is derived from pseudo images 

of proteins that stems from their amino acid sequence

simplicity of the features, a Q3 accuracy around 75% is achieve
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function can be explained as following. First step is to map 

the input vectors (protein sequence data) into a feature 

space with higher dimension, linearly

character of the transformation depends on

the kernel function. In the second step, it seeks an 

optimized linear division within the feature space from the 

first step to construct a hyperplane which divides the data 

points into their corresponding classes. Division can be 

either into two classes or can be extended to multiclass. 

SVM always looks for a global optimized solution to 

refrain from over- fitting. Therefore, SVM enables to 

handle with a large number of features whic

over-fitting data problem (Vapnik 1998; Cai et al 2003).
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fitting. Therefore, SVM enables to 

handle with a large number of features which may causes 
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2. SUPPORT VECTOR MACHINES  

Vapnik is the pioneer of the learning machines tool support 

vector machines (SVM). The first description of the 

machine was presented by Boser, Guyon, and Vapnik in 

1992 (Boser, et al. 1992).The detailed description of 

SVMs appeared in Vapnik’s 1998 book entitled 

“Statistical Learning Theory.” Cucker and Smale (Cucker, 

and Smale, 2001), introduced a mathematically rigorous 

treatment of supervised learning theory, with emphasis on 

the relationship of approximation to learning and the 

primary role of inductive inference, Schölkopf, 1997 

contributed to the field with the book “Support Vector 

Learning” (Schölkopf 1997) .Comprehensive treatments of 

kernel machines, including support vector machines, are 

presented in the books by Schölkopf and Smola 

(Schölkopf and Smola, 2002), Herbrich (Herbrich, 2002), 

Shawe-Taylorand Cristianini (Shawe-Taylorand 

Cristianini, 2004), and S. Haykin (Haykin, 2009). 

To explain how SVM works, we start with the case of 

separable patterns that arise in the context of pattern 

classification. The main idea behind the machine may be 

summed up as follows: Given a training sample, the 

support vector machine constructs a hyperplane as the 

decision surface in such a way that the margin of 

separation between positive and negative examples is 

maximized. This basic idea has an immediate extension to 

the more difficult case of nonlinearly separable patterns.  

A notion that is central to the development of the support 

vector learning algorithm is the inner-product kernel 

between a support vector��and a vector x drawn from the 

input data space. Most importantly, the support vectors 

consist of a small subset of data points extracted by the 

learning algorithm from the training sample itself. Indeed, 

it is because of this central property that the learning 

algorithm, involved in the construction of a support vector 

machine, is also referred to as a kernel method. However, 

the kernel method basic to the design of a support vector 

machine is optimal, with the optimality being rooted in 

convex optimization. This highly desirable feature of the 

machine is achieved at the cost of increased computational 

complexity.  

Support vector machine can be used to solve both pattern-

classification and nonlinear-regression problems. 

However, it is in solving difficult pattern-classification 

problems where support vector machines have made their 

most significant impact.  

2.1 Optimal Hyperplane for Linearly Separable Patterns  

Consider the training sample  ����, ���	,				� = 1,2, … , �    (1) 

where x
i 
is the input feature set for the ith protein and s

i 
is 

the corresponding desired response (class). In this sub 

section, we assume that the class represented by the subset ��	 = +1 and the class represented by the subset ��	 =−1are linearly separable. That is the decision surface that 

separates the two classes is a hyperplane of the form ��� + � = 	0,	     (2) 	
where x is an input vector, w is an adjustable weight 

vector, b is a bias. Then the decision condition may be 

written as ��	�����	 + 	�	� ≥ 1,				� = 1, 2, … , �  (3)  

For a given weight vector w and bias b, the separation 

between the hyperplane defined in Equation (2) and the 

closest data point is called the margin of separation, 

denoted by d. The goal of a support vector machine is to 

find the particular hyperplane for which the margin of 

separation, d, is maximized. Under this condition, the 

decision surface is referred to as the optimal hyperplane. 

Figure 1. illustrates the geometric construction of an 

optimal hyperplane for a two-dimensional input space. Let ����and ���� denote the optimum values of the weight 

vector and bias, respectively. Then the function ���� 	= �����	 + 	����    
(4)  

gives an algebraic measure of the distance from x to the 

optimal hyperplane (Duda and Hart, 1973). 

 

Figure 1.Optimal hyperplane for linearly separable 

patterns: The data points on the boundaries of the margin 

are support vectors.  

x can be expressed as 

�	 = �� + � � !"#� !"#    (5 

where xp is the normal projection of x onto the optimal 

hyperplane and r is the desired algebraic distance; r is 

positive if x is on the positive side of the optimal 

hyperplane and negative if x is on the negative side. Since, 

by definition, �$��% = 	0, it follows that 

���� = ����& �	 +	���� = �#����#                (6) 

or, equivalently, 

'	 = (�)�#� !"#     (7) 

In particular, the distance from the origin (i.e., x = 0) to the 

optimal hyperplane is given by ���� = �#����# . If 



47               B. Akcesme, M. Can / Southeast Europe Journal of Soft Computing Vol.5 No1

 ���� * 0, the origin is on the positive side of the optimal 

hyperplane; if ���� + 0,it is on the negative side. If 

the optimal hyperplane passes through the origin. A 

geometric interpretation of these algebraic results is given 

in Figure. 2.  

 

Figure2.Geometric interpretation of algebraic distances of 

points to the optimal hyperplane for a two-

case. 

The issue at hand is to find the parameters ����
the optimal hyperplane, given the training set T

1,2 …, N}. In light of the results portrayed in Figure

see that the pair (����,����) must satisfy the following 

constraint:  

, ����& �	 + 	���� ≥ 1,			-.�	�/ = +1����& �	 + 	���� 0 −1,			-.�	�/ = −11  

Note that if Equation (2) holds—that is, if the patterns are 

linearly separable—we can always rescale ����such that Equation (8) holds; this scaling operation 

leaves Equation (4) unaffected.  

The particular data points ���, ��� for which the first or 

second line of Equation (8) is satisfied with the equality 

sign are called support vectors—hence the name “support 

vector machine.”All the remaining examples in the 

training sample are completely irrelevant. Because of their 

distinct property, the support vectors play a prominent role 

in the operation of this class of learning machines. In 

conceptual terms, the support vectors are those data points 

that lie closest to the optimal hyperplane and are therefore 

the most difficult to classify. As such, they have a direct 

bearing on the optimum location of the decision surface. 

Consider a support vector ��2for which ��2 =
by definition, we have  

���34� = ����& �34 + ���� = 5+1	-.�		�34 = +−1	-.�		�34 = −
From Equation (7), the algebraic distance from the support 

vector ��2 to the optimal hyperplane is 

�	 = (���2�#� !"# = 6 7#� !"# 			-.�		�34 = +1
87#� !"# 		-.�		�34 = −1 1  

where the plus sign indicates that��2lies on the positive 

side of the optimal hyperplane and the minus sign indicates 
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that is, if the patterns are 
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for which the first or 
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hence the name “support 

vector machine.”All the remaining examples in the 

evant. Because of their 

prominent role 

in the operation of this class of learning machines. In 

conceptual terms, the support vectors are those data points 

that lie closest to the optimal hyperplane and are therefore 

the most difficult to classify. As such, they have a direct 

ring on the optimum location of the decision surface.  = +1. Then, 

+1−11 (9) 

), the algebraic distance from the support 

 (10) 

lies on the positive 

side of the optimal hyperplane and the minus sign indicates 

that ��2lies on the negative side of the optimal hyperplane. 

Let q denote the optimum value of the 

separation between the two classes that constitute the 

training sample t. Then, from Equation

9 = 2�	 = :#� !"#   

Equation (11) states the following: Maximizing the margin 

of separation between binary classes is equivalent to 

minimizing the Euclidean norm of the weight vector w. 

In summary, the optimal hyperplane defined by 

(4) is unique in the sense that the optimum weight vector ����  provides the maximum possible separation between 

positive and negative examples. This optimum condition is 

attained by minimizing the Euclidean norm of the weight 

vector w.  

2.1.1 Quadratic Optimization for Finding the Optimal 

Hyperplane  

The support vector machine is formulated 

convex optimization (Boyd and

Bertsekas et al. 2003), hence the well

the machine is guaranteed. Proceeds 

steps:  

1. Statement of the problem in the primal weight space as a 

constrained-optimization problem is set

2. The Lagrangian function of the problem is con

3. The conditions for optimality of the machine are 

derived.  

4. The optimization problem in the dual space of Lagrange 

multipliers is formulated.  

The Primal Problem 

Let us formally state the constrained

as follows: Given the training sample 1,2, … , �	, find the optimum values of the weight vector 

and bias b such that they satisfy the constraints 

the weight vector w minimizes the cost function;��� = �&�/2   

This constrained-optimization problem is called the 

problem. It is basically characterized as follows: 

o The cost function ;��� is a convex 

o The constraints are linear in w. 

Therefore, we may solve the constrained

problem by using the method of Lagrange multipliers 

(Bertsekas, 1995). First, we construct the 

function  

=��, �, >� = �?�: − ∑ >/A�/����B/C7
where the auxiliary nonnegative varia

Lagrange multipliers. The solution to the constrained

optimization problem is determined by the 

the Lagrangian function =��, �, >
Lagrangian is a point where the roots are real, but of 

March 2016 (45-57) 

 

of the optimal hyperplane. 

denote the optimum value of the margin of 

between the two classes that constitute the 

Equation (10), it follows that  

  (11) 

) states the following: Maximizing the margin 

of separation between binary classes is equivalent to 

minimizing the Euclidean norm of the weight vector w.  

In summary, the optimal hyperplane defined by Equation 

is unique in the sense that the optimum weight vector 

provides the maximum possible separation between 

positive and negative examples. This optimum condition is 

attained by minimizing the Euclidean norm of the weight 

2.1.1 Quadratic Optimization for Finding the Optimal 

ormulated in the realm of 

Boyd and Vandenbergh 2004; 

hence the well-defined optimality of 

roceeds goes along four main 

tatement of the problem in the primal weight space as a 

is set. 

The Lagrangian function of the problem is constructed.  

The conditions for optimality of the machine are 

The optimization problem in the dual space of Lagrange 

formally state the constrained-optimization problem 

as follows: Given the training sample D = ����, ���,				� =
, find the optimum values of the weight vector w 

such that they satisfy the constraints in (8),and 

minimizes the cost function 

  (12) 

optimization problem is called the primal 

It is basically characterized as follows:  

convex function of w.  

.  

, we may solve the constrained-optimization 

method of Lagrange multipliers 

(Bertsekas, 1995). First, we construct the Lagrangian 

� ��	 + 	�� − 1E       (13) 

where the auxiliary nonnegative variables >/are called 

The solution to the constrained-

optimization problem is determined by the saddle point of >�. A saddle point of a 

Lagrangian is a point where the roots are real, but of 
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opposite signs; such a singularity is always unstable. The 

saddle point has to be minimized with respect to w and b; it 

also has to be maximized with respect to a. Thus, 

computing the gradient of=��, �, >�with respect to 

(w,b)and setting the results equal to zero, we get the 

following conditions of optimality ∇=��, �, >� = 0     (14) 

Application of optimality condition to the Lagrangian 

function of Equation (13) yields the following equality:  

� = ∑ >/�/��BG/C7      (15)  

Application of optimality condition to the Lagrangian 

function of Equation (13) yields another constraint ∑ >/�/ = 0B/C7      (16) 

The solution vector w is defined in terms of an expansion 

that involves the N training examples. Note, however, that 

although this solution is unique by virtue of the convexity 

of the Lagrangian, the same cannot be said about the 

Lagrange multipliers>/.  
It is also important to note that for all the constraints that 

are not satisfied as equalities, the corresponding multiplier >/must be zero. In other words, only those multipliers that 

exactly satisfy the condition  >/A�/�����	 + 	�� − 1E = 0   (17)  

can assume nonzero values. This property is a statement of 

the Karush–Kuhn–Tucker condition(Fletcher, 1987; 

Bertsekas, 1995;Karush, 1939; Kuhn and Tucker, 1951; 

Kuhn1976).  

The Dual Problem 

The primal problem deals with a convex cost function and 

linear constraints. Given such a constrained-optimization 

problem, it is possible to construct another problem called 

the dual problem. This second problem has the same 

optimal value as the primal problem, but with the 

Lagrange multipliers providing the optimal solution. In 

particular, we may state the following duality theorem 

(Bertsekas, 1995):  

(a) If the primal problem has an optimal solution, the dual 

problem also has an optimal solution, and the 

corresponding optimal values are equal.  

(b) In order for ����to be an optimal primal solution and >���to be an optimal dual solution, it is necessary and 

sufficient that ����is feasible for the primal problem, and  

Φ$����% = ψ$���� , ���� , >���% = min� ψ��, �, >�(18) 

To postulate the dual problem for our primal problem, we 

first expand Equation (13), term by term, obtaining  

ψ��, �, >� = �?�: − ∑ >/�/����B/C7 − �∑ >/�/B/C7 +∑ >/B/C7         (19) 

The third term on the right-hand side of Equation (19) is 

zero by virtue of the optimality condition of Equation (16). 

Furthermore, from Equation (15), we have  �&� = ∑ >/�/����B/C7 = ∑ ∑ >/>M�/BMC7 �M�/&�NB/C7      (20) 

Accordingly, setting the objective function ψ��, �, >� =O�>�, we may reformulate Equation (19) as  

O�>� = ∑ >/ −B/C7 7:∑ ∑ >/>M�/BMC7 �M�/&�NB/C7   (21) 

where the >/are all nonnegative. Note that we have 

changed the notation from ψ��, �, >� to O�>�, so as to 

reflect the transformation from the primal optimization 

problem to its dual.  

We may now state the dual problem as follows:  

Given the training sample D = ����, ���,				� = 1,2, … , �	, 
find the Lagrange multipliers �>/ ,				� = 1,2, … , �	which 

constitutes a solution to the following constrained 

optimization problem: PQ�	O�>� 
subject to the constraints 

1) ∑ αSsS = 0USC7  

2) αS ≥ 0,				i = 1,2, … , N   (22) 

Unlike the primal optimization problem based on the 

Lagrangian of Equation (13), the dual problem defined in 

Equation (20) is formulated entirely in terms of the 

training data. Moreover, the function Q(a) to be 

maximized depends only on the input patterns in the form 

of a set of dot products 

�/&�N, �, N = 1,2, … , �    (23) 

The support vectors constitute a subset of the training 

sample, which means that the solution vector is sparse 

(Girosi, 1998; Vapnik 1998; Steinwart, 2003; Suykens, et 

al. 2002). That is to say, constraint (2) (Equation 22) of the 

dual problem is satisfied with the inequality sign for all the 

support vectors for which the >’s are nonzero, and with the 

equality sign for all the other data points in the training 

sample, for which the >’s are all zero. Accordingly, having 

determined the optimum Lagrange multipliers, denoted by >���,/, we may compute the optimum weight vector w by 

using Equation (15) as 

∑ >���,/�/�/BGW/C7      (24) 

where �34is the number of support vectors for which the 

Lagrange multipliers >���,/ are all nonzero. To compute 

the optimum bias ���� we may use the ����thus obtained 

and take advantage of Equation (9), which pertains to a 

positive support vector:  

���� = 1 − ����& �34 = 1 − ∑ >���,/�/�/&�34BGW/C7 ,			-.�	�34 =1      (25)  

Recall that the support vector x corresponds to any point 

(x,s) in the training sample for which the Lagrange 

multiplier α is nonzero. From a numerical (practical) 
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perspective, it is better to average Equation (23) over all 

the support vectors—that is, over all the nonzero Lagrange 

multipliers.  

2.2 Statistical Properties of the Optimal Hyperplane 

In a support vector machine, a structure is imposed on the 

set of separating hyperplanes by constraining the 

Euclidean norm of the weight vector w. Specifically, we 

may state the following theorem (Vapnik, 1995, 1998):  

Let D denote the diameter of the smallest ball containing 

all the input vectors�1, �2, . . . , ��. The set of optimal 

hyperplanes described by the equation  ����& � + ���� = 0    (26) 

has a VC dimension, h, bounded from above as 

ℎ 0 Z�[ \]^_`_a ,Zbc + 1   (27)  

where the ceiling sign d emeans the smallest integer 

greater than or equal to the number enclosed within the 

sign, fis the margin of separation equal to f = 2‖�‖ , and Zbis the dimensionality of the input space.  

The VC dimension, short for Vapnik– Chervonenkis 

dimension, provides a measure of the complexity of a 

space of functions (Vapnik– Chervonenkis, 1964). The 

theorem just stated tells us that we may exercise control 

over the VC dimension, that is the complexity of the 

optimal hyperplane, independently of the dimensionality Zbof the input space, by properly choosing the margin of 

separation p.  

Suppose, then, we have a nested structure made up of 

separating hyperplanes described by  hi = ���� + 	�:	‖�‖: 0 ki	,			l = 1,2, … 	 (28)  

By virtue of the upper bound on the VC dimension h 

defined in Equation (27), the nested structure described in 

Equation (28) may be reformulated in terms of the margin 

of separation in the equivalent form  

hi = 5m�2f2n+1:	f2 ≥ >i ,			l = 1,2, … o  (29) 

The >iand kiin Equations (28) and (29) are constants.  

Equation (22) states that the optimal hyperplane is a 

hyperplane for which the margin of separation between the 

positive and negative examples is the largest possible. 

Equivalently, Equation (28) states that construction of the 

optimal hyperplane is realized by making the squared 

Euclidean norm of the weight vector w the smallest 

possible. In a sense, these two equations reinforce the 

statement we made previously in light of Equation (11).  

2.3 Optimal Hyperplane for Nonseparable Patterns  

The discussion thus far has focused on linearly separable 

patterns. In this section, we consider the more difficult 

case of nonseparable patterns. Given such a sample of 

training data, it is not possible to construct a separating 

hyperplane without encountering classification errors. 

Nevertheless, we would like to find an optimal hyperplane 

that minimizes the probability of classification error, 

averaged over the training sample.  

The margin of separation between classes is said to be soft 

if a data point ���, ��� violates the following condition: ��	�����	 + 	�	� ≥ 1,				� = 1, 2, … , �  (30) 

This violation can arise in one of two ways:  

• The data point ���, ���  falls inside the region of 

separation, but on the correct side of the decision surface.  

• The data point ���, ��� falls on the wrong side of the 

decision surface. 

Note that we have correct classification in the first case, 

but misclassification in the second. To set the stage for a 

formal treatment of nonseparable data points, we introduce 

a new set of nonnegative scalar variables, p�,				� =1, 2, … , � into the definition of the separating hyperplane 

(i.e., decision surface), as shown here:  ��	�����	 + 	�	� ≥ 1 − p�,				� = 1, 2, … , �  (31)  p�are called slack variables; they measure the deviation of 

a data point from the ideal condition of pattern 

separability. For p�< 1, the data point falls inside the 

region of separation, but on the correct side of the decision 

surface. Forp�> 1, it falls on the wrong side of the 

separating hyperplane. The support vectors are those 

particular data points that satisfy Equation (31) precisely 

even if p�> 0. Moreover, there can be support vectors 

satisfying the condition p� = 0. Note that if an example 

with  p�> 0 is left out of the training sample, the decision 

surface will change. The support vectors are thus defined 

in exactly the same way for both linearly separable and 

nonseparable cases.  

The problem is to find a separating hyperplane for which 

the misclassification error, averaged over the training 

sample, is minimized. We may do this by minimizing the 

functional  Γ�p� = ∑ r�p/ − 1�B/C7     (32) 

with respect to the weight vector w, subject to the 

constraint described in Equation (31) and the constraint on ‖�‖. The function r� � is the unit step function. 

Minimization of Γ�p� with respect to w is a nonconvex 

optimization problem (Cook, 1971; Garey and Johnson 

1979; Cormen et al. 1990). To make the optimization 

problem mathematically tractable, we approximate the 

functional Γ�p� by writing  

Γ�p� = ∑ p/B/C7      (33) 

Moreover, we simplify the computation by formulating the 

functional to be minimized with respect to the weight 

vector w as follows:  
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ψ��, p� = �?�: + s ∑ p/B/C7    (34) 

As before, minimizing the first term in Equation (34) is 

related to the support vector machine. As for the second 

term, ∑ p/B/C7 , it is an upper bound on the number of test 

errors.  

The parameter C controls the tradeoff between complexity 

of the machine and the number of nonseparable points; it 

may therefore be viewed as the reciprocal of a parameter 

commonly referred to as the “regularization” 

parameter.When the parameter C is assigned a large value, 

the implication is that the designer of the support vector 

machine has high confidence in the quality of the training 

sample t. Conversely, when C is assigned a small value, 

the training sample t is considered to be noisy, and less 

emphasis should therefore be placed on it. The parameter 

C may be determined experimentally. 

The functional ψ��, p� is optimized with respect to w and p/ ,				� = 1, 2, … , �, subject to the constraint described in 

Equation (31), andp/> 0. In so doing, the squared norm of 

w is treated as a quantity to be jointly minimized with 

respect to the nonseparable points rather than as a 

constraint imposed on the minimization of the number of 

nonseparable points.  

The optimization problem for nonseparable patterns just 

stated includes the optimization problem for linearly 

separable patterns as a special case. Specifically, setting p/= 0 for all i in both Eqs. (31) and (34) reduces them to 

the corresponding forms for the linearly separable case. 

We may now formally state the primal problem for the 

nonseparable case as follows:  

Given the training sample  D = ����, ���,				� = 1, 2, … , �	 
find the optimum values of the weight vector w and bias b 

such that they satisfy the constraint  ��	�����	 + 	�	� ≥ 1 − p�,					p�	 ≥ 0,			� = 1, 2, … , �   (35) 

and such that the weight vector w and the slack variables p� minimize the cost functional  

ψ��, p� = �?�: + s ∑ p/B/C7    (36) 

where C is a user-specified positive parameter.  

Using the method of Lagrange multipliers and proceeding 

in a manner similar to that described in Section 2, we may 

formulate the dual problem for nonseparable patterns as 

follows: Given the training sample D = ����, ���,				� =1,2, … , �	, find the Lagrange multipliers �>�,				� =1,2, … , �	that maximize the objective function  

O�>� = ∑ >/ −B/C7 7:∑ ∑ >/>M�/BMC7 �M�/&�NB/C7  (37) 

subject to the two constraints 

5 ∑ >/�/ = 0,			B/C70 0 >�	 0 s, � = 1,2, … , �1                                          (38) 

where C is a user-specified positive parameter.  

Note that neither the slack variables p/nor their own 

Lagrange multipliers appear in the dual problem. The dual 

problem for the case of nonseparable patterns is thus 

similar to that for the simple case of linearly separable 

patterns, except for a minor, but important difference. The 

objective function O�>� to be maximized is the same in 

both cases. The nonseparable case differs from the 

separable case in that the constraint 0 0 >� is replaced 

with the more stringent constraint 0 0 >�	 0 s. Except for 

this modification, the constrained optimization for the 

nonseparable case and computations of the optimum 

values of the weight vector w and bias b proceed in the 

same way as in the linearly separable case. Note also that 

the support vectors are defined in exactly the same way as 

before.  

Unbounded Support Vectors  

For a prescribed parameter C, a data point ���, ��� for 

which the condition 0	 0 Q� 0 	sholds is said to be an 

unbounded, or free support vector. When Q� = 	s, we find 

that  ��t���� 	+ 	1,			Q�	 = 	s    (39) 

where F(x
i
) is the approximating function realized by the 

support vector machine for the input x
i
. On the other hand, 

when a
i 
= 0, we find that  

��t���� 	* 	1, Q�	 = 	0	    (40) 

In light of these two arguments, it follows that for 

unbounded support vectors, we have  ��t���� 	= 	1	     (41) 

Consequently, there is a distinct possibility of degeneracy 

(i.e., reduced optimality conditions) in the solution to a 

pattern-classification problem computed by the support 

vector machine. By this statement, we mean that a point ���, ��� that satisfies the margin requirement exactly has 

no constraint on the possible value of the associated Q�.  
In Rifkin (2002), it is argued that the number of 

unbounded support vectors is the primary reason for how 

difficult, in a computational sense, the training of a support 

vector machine can be.  

Support Vector Machine for Pattern Classification 

With the material on how to find the optimal hyperplane 

for nonseparable patterns at hand, we are now in a position 

to formally describe the construction of a support vector 

machine for a pattern-recognition task.  

Basically, the idea of a support vector machine hinges on 

two mathematical operations summarized here and 

illustrated in Figure. 3.:  
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1. Nonlinear mapping of an input vector into a high-

dimensional feature space that is hidden from both the 

input and output;  

2. Construction of an optimal hyperplane for 

separating the features discovered in step 1.  

 

Figure 3.Nonlinear mapping from the input space to the 

feature space 

The number of features constituting the hidden space in 

Figure 3 is determined by the number of support vectors. 

Thus, SVM theory provides an analytic approach for 

determining the optimum size of the feature (hidden) 

space, thereby assuring optimality of the classification 

task.  

2.4 Inner-product Kernel for Support Vector Machines 

Let xbe a vector from the input space of dimension n. Let �u����,				� = 1,2, … ,∞	 be a set of nonlinear functions 

that, transform the input space of dimension n to a feature 

space of infinite dimensionality. Given this transformation, 

we may define a hyperplane acting as the decision surface 

in accordance with the formula  ∑ ��		w����x/C7 	= 	0    (42)  

in matrix notation ��y��� 	= 	0     (43) 

where y���	 is the feature vector and w is the 

corresponding weight vector of weights ���,				� =1,2, … ,∞	that transforms the feature space to the output 

space. In the output space, decision is made whether the 

input vector x belongs to one of two possible classes, 

positive or negative. Bias is included in win Equation (42), 

and in (43).  

As in Section 2.3, we seek linear separability of the 

transformed patterns in the feature space. For this, we may 

adapt Equation (15) to our present situation by expressing 

the weight vector as  

� = ∑ >/�/Φ����BG/C7     (44)  

where  Φ���� 	= 	 A	w7����, w:����, . . . E&    (45)  

and N
s 

is the number of support vectors. Hence, 

substituting Equation (44) into Equation (43), we may 

express the decision surface in the output space as  

� = ∑ >/�/Φz����Φ���BG/C7    (46)  

We now immediately see that the scalar term Φz����Φ��� 
in Equation (46) represents an inner product. Accordingly, 

let this inner-product term be denoted as the scalar  

K���, �� = Φz����Φ���
=|wM&����wM���, �, 1,2, . . ,x

/C7 �3 
(47) 

Correspondingly, we may express the optimal decision 

surface (hyperplane) in the output space as  

∑ >/�/K���, ��BG/C7 = 0    (48) 

The function K���, �� is called the inner-product kernel 

which is formally defined as follows (Shawe-Taylor and 

Cristianini, 2004; Aizerman et al. 1964a, 1964b, Vapnik 

and Chervonenkis 1964; Boser et al. 1992). 

The kernel K���, ��is a function that computes the inner 

product of the images produced in the feature space under 

the embedding Φof two data points in the input space.  

Hence the kernel K���, ��is a function that has two basic 

properties (Schölkopf and Smola 2002; Herbrich, 2002; 

Shawe-Taylor and Cristianini 2004):  

Property 1.It is symmetric about the center point ��, that 

is,  }��, ��� 	= 	}���, �� for all ��,				� = 1,2, … , � (49) 

and it attains its maximum value at the point x = ��.  
Property 2. The total volume under the surface of the 

function }��, ��� is a constant.  

 

2.5 Design of Support Vector Machines  

The expansion of the kernel }��, ���in Equation (47) 

permits us to construct a decision surface that is nonlinear 

in the input space, but whose image in the feature space is 

linear. With this expansion at hand, we may now state the 

dual form for the constrained optimization of a support 

vector machine as follows:  

Given the training sample ����, ���,				� = 1,2, … , �	, find 

the Lagrange multipliers �>�,				� = 1,2, … , �	that 

maximize the objective function  

Q�>� = ∑ >/ − 7:B/C7 ∑ ∑ >/>MBMC7B/C7 �/�M}���, �N� (50) 

subject to the constraints  ∑ �/>/B/C7 = 0,     (51) 0 0 >� 0 s,				� = 1,2, … , � 

where C is a user-specified positive parameter.  

Constraint (1) arises from optimization of the Lagrangian 



52               B. Akcesme, M. Can / Southeast Europe Journal of Soft Computing Vol.5 No1 March 2016 (45-57) 

 

 

 

Q(a) with respect to the bias b, which is a rewrite of 

Equation (13). The dual problem just stated is of the same 

form as that for the case of nonseparable patterns 

considered in Section 2.3, except for the fact that the inner 

product �/&�Nhas been replaced by the kernel }���, �N�.  
SVMs have been used in a wide range of problems 

including drug design (Robert et al. 2000), image 

recognition and text classification (Joachims, 1998), 

microarray gene expression data analysis (Brown et. al. 

2000), and protein fold recognition, predicting protein 

structural class (Cai, et. al. 2001, Dinubhai , and Shah, 

2013; Akcesme, 2015), protein structure prediction 

(Mandle, at al, 2012; Hua, and Sun, 2001; Anjum, 2007; 

Ward, 2003). In this paper, we apply Vapnik's Support 

Vector Machine (Ding, and Dubchak 2001) for the 

classification of proteins into four structural classes all-

alpha, all-beta, alpha+beta, alpha/beta. 

 

3. A TEAM OF SUPPORT VECTOR MACHINES FOR 

PREDICTING PROTEIN STRUCTURAL CLASSES 

SVM is one of the most widely used and powerful 

classification algorithms to predict protein structural class 

(Zhang 2013; Liu and Jia 2010; Zhang 2011; Ding 2012; 

Kurgan and Homeian 2006).  SVM maps the input data to 

a higher dimensional space where it looks for a hyperplane 

to separate the training protein samples by their classes. 

  

3.1 Support Vector Machines in Use 

Support vector machines, are better performs in two class 

pair wise classification then multiple classification. 

Therefore we train six support vector machines to classify 

types = {{1, 2}, {1, 3}, {1, 4}, {2, 3}, {2, 4}, {3, 4}} (52) 

where type 1 is all-α, type 2 is all-β, type 3 is α+β, and 

type 4 α/β. To maximize objective function of the support 

vector machine, built-in function NMaximize of Wolfram 

MATHEMATICA is employed. Because of limitations of 

this function, the sizes of training sets are limited to 40, 

and 80. 

 

To classify proteins, each protein is represented by a 

vector of dimension 33. To transform linearly non 

separable data to a higher dimensional space where 

transformed data is linearly separable, Gaussian type radial 

base functions are employed.  φ��� = ExpA−‖� − xtr‖^2 �2sigma^2�⁄ E                (53) 

 

The objective function of the maximization problem (50) 

is constructed. NMaximize function returns the values of 

weights >/ , � = 1, … ,2Z where m is the size of the training 

set from each of the two classes. 

 

 
Figure 4.Gaussian radial base functionsφ���. 
According to the decision function (51), a test set that 

consists of proteins from classes for which the support 

vector machine is trained is classified.  

 

3.1 A Team of Competing Support Vector Machines 

To run six support vector machines in (52) in tandem, that 

are trained to classify classes pair wise, we benefit from 

the fact that a SVM which is trained to distinguish between 

class i, and class j can also be used to distinguish between 

class j, and class i. We also invent four dummy SVMs to 

distinguish between classes i, and class i which always 

vote zero. Therefore we create a classifier that is a 

combination of sixteen support vector machines. 

SVM(1,1) SVM(1,2) SVM(1,3) SVM(1,4) 

SVM(2,1) SVM(2,2) SVM(2,3) SVM(2,4) 

SVM(3,1) SVM(3,2) SVM(3,3) SVM(3,4) 

SVM(4,1) SVM(4,2) SVM(4,3) SVM(4,4) 

When a test data enters into the classifier, a 4×4 decision 

matrix is created. Assume the test data was from class all-

β. If they succeed correctly classifying this data, support 

vector machines of the second row would vote +1, while 

machines on the second column vote -1. The other experts 

in the classifier would vote mixed votes since they don’t 

have expertise in classifying this type of a protein. 

0 -1 1 -1 

1 0 1 1 

-1 -1 0 -1 

1 -1 1 0 

When we reorganize votes in Figure 6 columns after rows 

we get: �0, −1,1, −1,0,1, −1,1	 �1,0,1,1, −1,0, −1,−1	 �−1,−1,0, −1,1,1,0,1	 �1, −1,1,0, −1,1, −1,0	 
 

Assume an unknown protein is entered into classifier, and 

the decision of experts are as follows: �0, −1,1, −1,0,1, −1,1	 �1,0, −1,1, −1,0,1, −1	 �1,1,0, −1,−1,−1,0, −1	 �1, −1,1,0, −1,1, −1,0	 

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0
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Hamming distances of these vectors to their ideal vectors 

are 3, 2, 1, and 2. Then classifier concludes that the 

unknown protein is of class three, that is the class α+β. 

 

4. FEATURES DERIVED FROM PSEUDO IMAGES 

OFAMINO ACID SEQUENCES 

The major goal of this section may be summarized as 

follows: take the sequence of a protein, attaching a gray 

level to twenty amino acids, transform the sequence into a 

sequence of gray levels, then, and generate the features 

that will subsequently be fed to a classifier in order to 

classify the image in one of the possible classes.  

 

4.1 Transform Sequence into a Sequence of Gray Levels 

Consider the protein with PDB code 1A1W (Eberstadt, M 

et.al. 1998). It consists of amino acids 
 

MDPFLVLLHSVSSSLSSSELTELKYLCLGRVGKRKL

ERVQSGLDLFSMLLEQNDLEPGHTELLRELLASLRR

HDLLRRVDDFELEHHHHHH  

 

When the symbols for amino acids are transformed into 

integers from 1 to 20 according their positions in the  

 letteralphabet = "ARNDCQHGEILKMFPSTWYV"; 
 

we obtain the sequence of integers 

 } = �1, 2, 3, … ,20	    (54) 
 

When each integer in (54) is replaced by its reciprocal, 

then the sequence of gray levels  

   = {1,1/2,1/3, … ,1/20}    (55) 
 

is obtained. 

 

When each letter in the amino acid sequence of the protein 

is replaced by its integer label in (54), a sequence of 

integers we get 

 

{13, 4, 15, 14, 11, 20, 11, 11, 7, 16, 20, 16, 16, 16, 11, 16, 

16, 16, 9, 11, 17, 9, 11, 12, 19, 11, 5, 11, 8, 2, 20, 8, 12, 2, 

12, 11, 9, 2, 20, 6, 16, 8, 11, 4, 11, 14, 16, 13, 11, 11, 9, 6, 

3, 4, 11, 9, 15, 8, 7, 17, 9, 11, 11, 2, 9, 11, 11, 1, 16, 11, 2, 

2, 7, 4, 11, 11, 2, 2, 20, 4, 4, 14, 9, 11, 9, 7, 7, 7, 7, 7, 7} 

 

 
Figure 5.Sequence of a Protein: a chain of amino acids. 

 

Then each integer in the above is replaced by its reciprocal 

to obtain a sequence of gray levels. Only to make it 

apparent we repeat it fifty times. The gray image of the 

result is in the below: 

 

 
 

Figure 6. Gray image that represents the protein with PDB 

code 1A1W. 
 

This image is stored in the computer as a one-dimensional 

array 

 h�¡/�, � =  1, . . . , �,   ¡/ ∈                                             (56) 
 

where N is the number of residues of the protein. ith 

element of the array corresponds to a pixel of the image, 

whose gray level is equal to ¡/. Gray levels ¡/ ∈   are 

quantized in Ng=20 discrete gray levels and Ng is known 

as the depth of the image.  

 

4.1 Drive Features from Gray Images 

The need for feature generation stems from our inability to 

use the raw data in classification. For our classification 

task the number of the pixels is the same as the length of 

sequence which is the number of the residues in amino 

acid chain. 

 

Feature generation is a procedure that computes new 

variables that in one way or another originate from the 

stored values of the image array S. The goal is to generate 

features that exhibit high information-packing properties, 

from the class separability point of view. Because we 

cannot use the raw data S directly, the features should 

encode efficiently the relevant information residing in the 

original data. 

 

4.1.1 Features for Texture Characterization 

The distribution of the gray levels over the pixels of a 

region of an image, determines its texture. By the 

appearance we describe an image as  

fine or coarse,  

smooth or irregular,  

homogeneous or inhomogeneous. 

 

Our goal in this subsection is to generate appropriate 

features that, somehow, quantify these properties of an 

image region. These features will emerge by the use of 

space relations underlying the gray level distribution. 
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First-Order Statistics Features 

1)The first-order histogram: 

Let z be a variable representing the gray levels in the 

region of interest. 

P(z) = number of pixels with gray level z / total number of 

pixels  in the region    (57) 

 

That is, P(z) is the fraction of pixels with gray level z. 

 

2) Moments: Z/ = £A¡/E = ∑ ¡M/:bMC7 ¤$¡M%,   � = 1,2, …(58) 

It is clear thatZb = 1 and Z7 = £A¡E, the mean value of z. 

 

3)Central Moments: 

¥/ = £A�¡ − £A¡E�/E = |�¡M − Z7�/:b
MC7 ¤$¡M%,   � = 1,2, … 

(59) 

The most frequently used central moments are ¥:, which is 

the variance, and ¥¦ which is known as the skewness and ¥§, the kurtosis of the image.  

The variance is a measure of the image spread, that is, a 

measure of how much the gray levels differ from the mean. 

Skewness is a measure of the degree of histogram 

asymmetry around the mean, and kurtosis is a measure of 

the image sharpness.  

 

4)Absolute Moments: 

¥/ = £A|¡ − £A¡E|/E = |©¡M − Z7©/:b
MC7 ¤$¡M%,   � = 1,2, … 

(60) 

5) Entropy: 

Entropy is a measure of image uniformity.  ª = −£Alog: ¤�¡�E = ∑ ¤$¡M% log: ¤�¡M�:bMC7    (61) 

Image is uniform if ¤�¡�is constant. That is H is higher.  

 

Second-Order Statistics  

6) Features-Co-occurrence Matrices 

First-order statistics provide information related to the gray 

level distribution in the image, they do not give any 

information about the relative positions of the various gray 

levels within the image. All low-value gray levels may 

position together, or they may interchange with the high- 

value ones. This type of information can be extracted from 

the second-order histograms, where the pixels are 

considered in pairs.  

For each combination value of d a one-dimensional 

histogram is defined: 

¤�h��� = ¡7, h�� ± � = ¡:� = The number of pixels at 

distance d with values $¡7,¡:% / total number of possible 

pairs.      (62) 

7) Angular second moment 

This feature is a measure of the smoothness of the image. 

If all pixels are of the same gray level z = k , then  ¤ �l, l� =  1 Q[  ¤��, N� = 0, � ≠ l .� N ≠ l , Q[    (63) ¯hP =  1. 
At the other extreme, if we could have all possible pairs of 

gray levels with equal probability 1/R, then ASM = R/R^2 

= 1/R.  

The less smooth the image is, the more uniformly 

distributed P(i,j) and the lower the ASM. ¯hP = ∑ ∑ ¤��, N�::bMC7:b/C7     (64) 

8) Contrast 

This is a measure of local gray level variations hence it is 

the image contrast.  s°� = ∑ [::b±C7 ²∑ ∑ ¤��, N�:bMC7:b/C7 ³|/8M|C±  (65) 

Indeed, inside of the bracelet is the percentage of pixel 

pairs whose intensity differs by n. The factor [:weighs the 

big differences more; thus, CON takes high values for 

images of high contrast. 

 

9) Inverse Difference Moment  ´t = ∑ ∑ ¤��, N�/�1 + �� − N�:�:bMC7:b/C7   (66) 

Because of the  1/�� − N�: dependence, this feature takes 

high values for low-contrast images. 

 

10) Second-Order Entropy ª)µ = − ∑ ¤��, N� log: ¤��, N�:bMC7    (67) 

Second-order entropy is a measure of randomness of the 

distribution of gray levels, and takes low values for smooth 

images as the first order entropy. 

 

Features Using Gray Level Run Lengths 

Length of a set of consecutive pixels having the same gray 

level value is a gray level run. Run length features encode 

textural information related to the number of times each 

gray level occurs. Gray Level Run Lengths matrix O��, N�is 

such that the element ��, N�  represents a pixel with the gray 

level¡/appears in the image by itself, j=1, the number of 

times it appears in pairs, j=2, and so on. Its �� , N �th 

element gives the number of times a gray level ¡/ , � = 1, 2, . . . , 20 , appears in the image with run length�M  , N  =  ¶ , 2, . . . , �·.Considering the length of proteins in datasets, 

we have adopted Gray Level Run Lengths matrices O��, N�of size20×50. 
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11) Short Run Emphasis 

This feature emphasizes small run lengths, due to the 

division byN:. 
h¸£ = ∑ ∑ ¹º»�/,M�/M_¼½¾¿À_ÁÂ¿À∑ ∑ ¹º»�/,M�¼½¾¿À_ÁÂ¿À     (68) 

The denominator is the total number of run lengths in the 

matrix. 

12) Long Run Emphasis 

This feature emphasizes long run lengths, due to the 

multiplication byN:. 
Ã¸£ = ∑ ∑ ¹º»�/,M�M_¼½¾¿À_ÁÂ¿À∑ ∑ ¹º»�/,M�¼½¾¿À_ÁÂ¿À     (69) 

SRE will be large for coarser and LRE will be large for 

smoother images. 

13) Gray Level Nonuniformity 

The term in the brackets is the total number of run lengths 

for each gray level. 

ÄÃ�Å = ∑ Æ∑ ¹º»�/,M�¼½¾¿À Ç__ÁÂ¿À∑ ∑ ¹º»�/,M�¼½¾¿À_ÁÂ¿À     (70) 

Large run length values contribute a great deal because of 

the square. When runs are uniformly distributed among the 

gray levels, GLNU takes small values. 

 

14)  Run Length Nonuniformity 

¸Ã� = ∑ Æ∑ ¹º»�/,M�_Á¾¿À Ç_¼½Â¿À∑ ∑ ¹º»�/,M�¼½¾¿À_ÁÂ¿À     (71) 

RLN is a measure of run length nonuniformity 

 

15) Run Percentage 

¸¤ = ∑ ∑ ¹º»�/,M�¼½¾¿À_ÁÂ¿À È     (72) 

RP takes low values for smooth images. 

 

Summary of Features 

First-Order Statistics Features 

Features 1-20 come from the first-order histogram: That is, 

the fraction of pixels with gray level ¡/ , � =  1, . . . , � . 
Moments 21, central moments 22, absolute moments 23, 

entropy 24. 

Second-Order Statistics  

Angular second moment 25, contrast 26, inverse difference 

moment 27, second-order entropy 28. 

Features Using Gray Level Run Lengths 

Shortrun emphasis 29, longrun emphasis 30, gray level 

nonuniformity 31, run length nonuniformity 32, run 

percentage 33. 

Each protein in the dataset represented by these 33 features 

derived from the pseudo images of proteins using their 

amino acid sequences. Then this data is used in training six 

machine teams of support vector machines. 

 

4. RESULTS AND DISCUSSION 

For the proteins in 25PDB database, pseudo images are 

created from their amino acid sequences. Then 33 features 

are derived from these images by the techniques of digital 

image processing (Akcesme, B., Thesis 2016). Using these 

features, proteins of 25PDB dataset are classified. 

Classification accuracies are as in the confusion matrix 

below: 

É85.5 3. 3. 8.54. 68.5 10.5 17.7. 2.5 88. 2.512. 19.5 1. 67.5Ð 

 

It is seen that Q3 accuracy around 75% is achieved, and 

88% accuracy in the classification of the class α+β is 

remarkable. 

 

In the same thesis work, other feature sets are also derived 

from pseudo images of PSSM matrices, and predicted 

secondary structures of proteins. Especially features 

derived from the pseudo images of secondary structures 

supplied Q3 classification accuracy around 90%. 
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