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1. INTRODUCTION  

The main measure of an investment risk, whether of a 

single financial instrument (stock, bond, forward…) or a 

portfolio, would be the measure of its volatility. While 

considering the simplicity of calculating an implied 

volatility based on a given market price of an instrument, it 

is the volatility of the approaching period through which 

the instrument is to be held that actually matters.

 

In this paper, tested will be three different methods of 

using only the historical data to estimate the current 

volatility. Also, to make the comparison more conclusive, 

the calculation is being done using three sets of data, as to 

ensure the parallel result in each of them. Expected would 

be less extreme values, as all of the three sets 

values of different Stock Indexes. Data used in this paper 

include two years of historical daily of the S&P100, 

S&P500, and DOW JONES INDUSTRIAL Indexes. So, 
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Abstract 

The volatility is the topic that has been researched in last few decades in 

various directions. One group of these methods includes the 

characteristics accumulated through the historical movements of the price 

of a specific instrument. Other than past data, most of them include other 

factors such as the stochastic part. In this paper revised are three methods 

of EWMA, ARCH, and GARCH. 
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volatility is being estimated for every day, and the daily 

estimation is being compared to the realized.

 

2. ESTIMATING VOLATILITY 

It is also needed to mention that the form

as well as of GARCH used in this paper excludes the 

stochastic part. ARCH(m) would rather be of a form

γV� � ∑ α��σ
��
�
�� z��	, z� ∼ 	NID�

random number under normal distribution with mean zero 

and standard deviation one (also known as white noise). 

The following structure, as used further in this paper, of 

both ARCH and GARCH was taken from the Hull(2009

   u� � ln
�

The next step is to calculate the mean value of that 

continuous interest rate based on preceding m day

The volatility is the topic that has been researched in last few decades in 

various directions. One group of these methods includes the 

characteristics accumulated through the historical movements of the price 

, most of them include other 

factors such as the stochastic part. In this paper revised are three methods 

volatility is being estimated for every day, and the daily 

estimation is being compared to the realized. 

It is also needed to mention that the formulation of ARCH 

as well as of GARCH used in this paper excludes the 

stochastic part. ARCH(m) would rather be of a form	σ

� �

�0, 1�, where z�	is a 

random number under normal distribution with mean zero 

(also known as white noise). 

The following structure, as used further in this paper, of 

ARCH was taken from the Hull(2009). 

� 

� !"
 

The next step is to calculate the mean value of that 

continuous interest rate based on preceding m days by 
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�

�
∑ u
��

�
�� .  

   

The mean variance for a single day, calculated through 

those m values of the continuous interest rates of the 

preceding m number of days would be: 

 σ

� �

�

���
∑ �u
�� − u���

��   2.1 

On the other hand, for its practicality, some considerably 

negligible changes are being made in the 2.1 formula. First 

of them is that instead of using the exponential formula for 

the continuous rate of interest, the u�	is to be calculated as 

a single day percentage change of the price 

  u� �
� �� !"

� !"
    2.2 

The mean value of interest rate u is considered to be of a 

negligible value and thus is being replaced by zero, having 

taken into consideration the same likelihood of positive 

and negative trends in price changes. And finally, the m-1 

is being substituted by m. While making minimal if any 

change in the calculated values, these changes make it 

possible to reasonably simplify the formula for calculating 

the variance to: 

  σ

� �

�

�
∑ u
��

��
��    2.3 

 

2.1 WEIGHTING SCHEMES 

 

As seen in the equation 2.3 each value of u� inclusively 

ranging from u
��,u
��$� onwards until u
�� is being 

given the same weight of	
�

�
. On the other hand, as to 

evaluate the current value, it would be more suitable to 

give higher weight to the more recent values. As to make 

that change in the above formula, the	
�

�
	the	part would be 

replaced by α� which would be the weight assigned to the 

day ′n − i’. That would provide us with a new formula: 

 

 σ

� � ∑ α�u
��

��
��    2.4 

 

The value of α� is to be decreasing with the increase in i, 

that way the more recent the value is the more impact it is 

being assigned. At the same time the sum of all the α� 

values are to add up to one. 

 

 ∑ α� � 1�
��  

 

The 2.4 equation could be further expanded by giving 

some weight to a certain value of variance historical 

average, based on a history of that instrument. Taking V� 

to be that long-term historical return variance; γ is the 

weight that is to be assigned to	V�. Now that the weight is 

to be distributed between γ	and	α�, it provides: 

 *+
� � ,-. � ∑ /01+�0

�2
0�   2.5 

Where , � ∑ /0
2
0� � 1 

 

 

 

2.2 AUTOREGRESSIVE CONDITIONAL  

HETEROSKEDASTICITY 

In the mentioned formulas, the variance estimation is 

being divided between the historical long-run average 

variance and the weighted average of m preceding 

observations. Replacing the γV� part of the formula with 

ω � γV� brings out the formula of autoregressive 

conditional heteroskedasticity (ARCH) originally 

suggested by Engle (1982): 

 σ

� � ω � ∑ α�u
��

��
��    2.6 

Satisfaction with the outcomes achieved through ARCH 

has been reported by among others Diebold and Nerlove 

(1986), Lastrapes (1989). They have confirmed it suitable 

in different financial time-series. 

In practice, in this paper the ARCH method was applied 

for S&P100 European Style Index also known as XEO, 

using two years of the daily closing price of the index. The 

daily percentage change was calculated using u� � ln
� 

� !"
, 

and the formula 2.6 was used to, through optimization, 

minimize the squared difference between ARCH volatility 

estimation and the CBOE S&P 100 Volatility Index 

(VXO) by changing the values of w and α�. 

Among the considerations was how many periods ‘ p’ 

ARCH(p) is to be considered. While solving with small 

number of α�′s the optimization results were not stable, 

rather through running the same process again and again it 

would give a number of different ‘optimization’ results. 

On the other hand, having i>10 did show stability in the 

answers as did that same increase improve the 

optimization (minimization of the difference between 

ARCH(p) and VXO values).  The following were the 

optimization results for w and α� for i=15 

 

S&P100 

European Style 

XEO 

S&P500 

European Style 

SPX 

Dow Jones 

Industrial 

Average DJI 

w = 5.67E-05 

α1 = 0.129687 

α2 = 0.086247 

α3 = 0.057773 

α4 = 0.029855 

α5 = 0.003982 

α6 = 0.036741 

α7 = 0.032502 

α8 = 0.020817 

α9 = 0.008472 

α10 = 0.003079 

α11 = 0.014713 

α12 = 0 

α13 = 0 

α14 = 0 

α15 = 0 

w = 5.51E-05 

α1 = 0.119323 

α2 = 0.083616 

α3 = 0.061001 

α4 = 0.02928 

α5 = 0.001661 

α6 = 0.036785 

α7 = 0.036212 

α8 = 0.029537 

α9 = 0.020668 

α10 = 0.007451 

α11 = 0.022038 

α12 = 0 

α13 = 0 

α14 = 0 

α15 = 0 

w = 5.13E-05 

α1 = 0.135967 

α2 = 0.092107 

α3 = 0.061356 

α4 = 0.033398 

α5 = 0.007507 

α6 = 0.041574 

α7 = 0.035127 

α8 = 0.023854 

α9 = 0.010616 

α10 = 0.010671 

α11 = 0.020176 

α12 = 0 

α13 = 0 

α14 = 0 

α15 = 0 
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Then, upon testing the forecast based on the above formula 

and the data, the mean value of the Squared Differences 

was 0.000505. The mean value of the square root of the 

Squared Differences was 0.0169 while its median was 

0.0139. Maximum difference was 0.152 while the 

minimum difference was 0.00005. The Standard Deviation 

of the difference between volatility forecast through 

ARCH(15) and the VXO was 0.01848 or 1.85%. The 

maximum difference of 0.152 is 9.14 standard deviations 

above the mean. 

One of the characteristics of the outcomes the ARCH gave, 

as opposed to initial expectation, is that the weight was not 

decreasing orderly through increase in i of 

corresponding	α�. Instead, it was decreasing from i=1 till 

i=5, and then after noticeable increase for i=6 decreasing 

until i=10 (inclusively), and then from i=10, it would start 

increasing but starting from i=12 on 	α� = 0. Parallel is the 

movement, increase-decrease, for DJI, as well as for SPX 

ARCH(15), where in addition to	α� for i=5 and i=10 

having values of  local minimum, and starting from i=12 

and on all 	α� have the value of zero.  

 
Figure 2.1 – Squared difference between XEO ARCH(15) 

outcomes and VXO 

As outcome in Figure 2.1 shows that good majority of 

XEO volatility estimations have the squared difference 

below 0.002. Actually, 79.72% of ARCH(15) estimations 

had error below 0.025 or 2.5% (corresponding to square 

error of 0.000625). On the other hand, 99.6% of 

ARCH(15) had error below 0.1 or 10% (or squared error 

of 0.01). 

 

Figure 2.2 – The XEO ARCH(15) outcomes and VXO 

Figure 2.2 shows the VXO (CBOE S&P 100 Volatility 

Index), and the ARCH(15) volatility estimation for 

S&P100 European Style Index. It can be seen that at 

extreme changes of the market volatility, ARCH(15) needs 

a few trading periods to catch that change, which could be 

considered as a weakness point of taking the past fifteen 

periods of price change. 

Doing the ARCH(4) for the same data of S&P100 

European Style Index (XEO), there was not a big 

underperformance considering much less of historical data 

used in each calculation. The same conclusion can more 

assertively be concluded through the mean value of the 

Squared Differences 0.000545 as opposed to 0.000505 that 

occurred in ARCH (15). 

 
Figure 2.2 – The XEO ARCH(4) outcomes and VXO 

The ARCH was further developed by Engle, Granger and 

Kraft (1984), as they were the first to publish an extension 

of the ARCH model to be multivariate. Besides that, Bera 

and Higgins (1993) state a few advantages of the ARCH as 

the main grounds for its success. According to them, while 

managing the clustered errors as much as it does 

nonlinearities, ARCH models are simple and easy to 

handle. 

2.3 EXPONENTIALLY WEIGHTED MOVING 

AVERAGE MODEL 

When applying the EWMA there is no chance that an older 

historical value gets to be given higher weight, as was the 

case in the outcomes of previous three examples in ARCH. 

In the Exponentially Weighted Moving Average (EWMA) 

Model, the formula is being developed based on the 

equation 2.5, where the historical long-run average 

variance V�is being replaced by a single period volatility. 

At the same time, while looking back for the data of m 

periods, it includes an exponential decline of the weight 

given to previous returns u
�� respectively with an 

increase in	i. 
 σ
� = λσ
��� + (1 − λ)u
���    

The difference is that the exponential change of weight is 

based on one single value λ which when compared to 

ARCH replaces the two variables of γ	&	/, while its 

possible value ranges between 0 and 1. So, the variance 

σ
� 	of the day ‘n’ can be estimated based on the variance of 

the preceding day	σ
��� .  Similarly, taking an additional 
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step back for one period, the	σ
��� 	would be calculated 

based on 	σ
���  as: 

 σ
��� = λσ
��� + (1 − λ)u
���  

By putting the same into the σ
� equation, the extended 

formula becomes: 

σ
� = λ(λσ
��� + (1 − λ)u
��� ) + (1 − λ)u
���  

With few more algebraic steps it becomes: 

σ
� = (1 − λ)(u
��� + λu
��� ) + λ�σ
���  

Applying the previous steps by substituting for 

σ
��� 	makes it:  

σ
� = (1 − λ)(u
��� + λu
��� + λ�u
�7� ) + λ7σ
�7�  

Going on in the same direction provides 

 σ
� = (1 − λ)∑ λ���u
������ + λ�σ
���  2.7 

 

Where, knowing that λ ranges between 0 and 1, with 

higher values of m, the value of λ�σ
���  becomes 

reasonably small, mostly due to λ�, so it can be 

overlooked. So the remaining 

 σ
� = (1 − λ)∑ λ���u
������  

Becomes just the same as the equation 2.4, where the value 

of each	α�would be substituted by (1 − λ)λ���. 

In practice EWMA is being used by the JPMorgan’s 

RiskMatrics database, which was providing the daily 

volatility estimates, having determined the best value of λ 

to be 0.94. Having it applied with the data used previously 

for ARCH method, slightly different results were attained. 

The question is how to determine the best value of the	λ, as 

well as the number of periods to go back in the calculation 

process “m”. 

2.4 THE GENERALIZED AUTOREGRESSIVE 

CONDITIONAL HETEROSKEDASTICITY 

The GARCH(p, q) model was originally introduced by 

Bollerslev(1986), as a further development of the Engle’s 

ARCH. In GARCH(p, q), in addition to the long-run 

average variance rate, V�, and the past periodical 

percentage change of the price, u�, the past periodical 

volatility value is also taken into consideration. That 

periodic volatility would also be combined with a 

stochastic variable, but as stated before, the stochastic part 

is not included in this paper.  

As GARCH(p,q) would look back for the price percentage 

change for p periods, it would look into q past volatility 

values. So looking only at the single period percentage 

change, as well as a single period volatility, achieved 

would be the GARCH(1,1), the model suggested by Taylor 

(1986), where 

 σ
� = γV� + αu
��� + βσ
���   2.8 

Where	γ,	α, and β are the weights assigned to V�, u
���  and 

σ
��� , respectively. Those weights must add up to a total of 

1: 

 γ + α + β = 1 

In this case, the previously covered model of 

Exponentially Weighted Moving Average (EWMA) would 

be a specific case of GARCH(1,1) where γ = 0, α = 1 −
λ, and	β = λ. 

As done in the ARCH model, the γV� part of the formula is 

being replaced with ω: 

 σ
� = ω + αu
��� + βσ
���    2.9 

The above formula is being used as to evaluate the best 

distribution of the parameters	w,	α, and	β.The value of 

γ	can thereby be calculated as	γ = 1 − α − β, and thus 

follows the calculation of V� = <
= . Reasonably, the sum of 

α and	βmust be less than 1, as otherwise γ would be 

negative. 

As for the GARCH(p, q), equation is: 

σ
� = ω + ∑ α�u
���>
�� + ∑ β?σ
�?�@

?�   2.10 

Taking the formula of GARCH(1,1), and replacing its 

σ
���  part of βσ
���  with its GARCH(1,1) gives 

σ
� = ω + αu
��� + β(ω + αu
��� + βσ
��� ) 

σ
� = ω + βω + αu
��� + αβu
��� + β�σ
���  

Repeating the same procedure, this time for σ
���  

σ
� = ω + βω + β�ω + αu
��� + αβu
��� + αβ�u
�7�
+ β7σ
���  

Proceeding the same way brings the final form of 

σ
� = ω + Aβ�ω
B

��
+ A αβ�u
�����

B

�C
+ βB$�σ
�B�  

Taking a reasonably high value of k would make the value 

of βB$�	as low as to eliminate the significance of past 

value of volatility	σ
�B� , just as is the case in EWMA. The 

significant difference remaining between the two is the 

weight GARCH(1,1) gives to the historical volatility of V� 

(ω = γV�). 

2.5 THE MAXIMUM LIKELIHOOD METHOD 

The question remaining is how to determine the values of 

α, β, and	γ (w = γV�) for the GARCH(p,q), as well as the 

value of λ for the EWMA model. The first assumption is 

that the price change between two periods is normally 

distributed with the zero mean and the variance is to be 

calculated. Assume having m observations with each 

having a single period percentage change of u�, u�, … , u�. 

The probability density function formula gives the 

probability of occurrence of u� 

1
√2πυ exp	(−u��

2υ ) 
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The variable υ is the variance value that is to be estimated. 

Probability of occurrence of these m observations, in the 

observed order, would be the product of the probability of 

each 

 ∏ M �
√�NO exp	(�P Q

�O )R���    2.11 

The estimation of the variance value υ is to be done as to 

maximize the value of this expression. Maximum of an 

expression is the same as maximization of its Natural 

Logarithm. Moreover, constant multiplicative factors can 

be ignored, as they do not influence the maximization 

process. So taking the natural log of the above formula 

gives 

 ∑ Mln S�
OT − P Q

O R���     2.12 

This can be further rewritten as 

 −m ln(υ) − ∑ P Q
O

���  

Taking its first derivative with respect to υ, and assigning 

it to zero value, in order to reach the maximum likelihood 

estimation of 

 
�
� ∑ u�����  

Where in both cases of EWMA or GARCH(1,1), the single 

value of υ, is to be replaced by the periodical value, which 

would be the estimated variance by the method. 

Maximization is to be done to the 

 ∑ Mln S �
O 
T − P Q

O R���  

Or rewrite it as 

 ∑ M−ln υ� − P Q
O R���    2.13 

3. APPLICATION AND COMPARISON 

Let EWMA(m) be the EWMA calculation based on m 

most recent observations. The calculation is done by 

assigning the above objective function (2.13) to be 

maximized, where u� = ln � 
� !"

 , and the calculated 

variance estimation for each period of 

 

 υ� = (1 − λ)∑ λ���u
������ + λ�σ
��� .  

In the following examples, the same XEO data of 525 

trading days were used. Calculating EWMA(25) gave the  

weight value of λ =0.8797. On the same data, EWMA(10) 

gave the weight value of 0.8982. The two also gave a very 

similar Total Sum of the Maximization Formula of 

4598.18 and 4595.62 respectively, which shows that the 

additional 15 periods used in EWMA did not make a 

significant difference in the outcome. 

Similar optimization was done for GARCH(1,1), where  

u� = ln � 
� !"

,and  υ
 = ω + αu
��� + βσ
��� , where all three 

variables of ω,α, and	β are to be determined through 

optimization. The expression (−ln υ� − P Q
O ) was calculated 

for every trading day, and added up for the 525 trading 

days of the sample, where the objective is to maximize the 

sum. The values assigned to the variables were 

ω =0.0000791, α =0.193225, and	β = 0.67974 while the 

total sum that was maximized reached the value of 

4618.45. 

Interestingly, GARCH(1,1) outperforms EWMA(25), even 

though the difference is not significant. An interesting 

conclusion is that a single period GARCH outperforms 25 

or 10 periods EWMA. It might still be questionable 

whether it always outperforms it, given the difference 

being “small”. 

Similarly, the calculation was done for S&P500 Index 

(SPX) where EWMA(25) gave the maximized sum of 

4591.88, whereas its GARCH(1,1) returned the sum of 

4618.42. The same was done for the index of Dow Jones 

Industrial (DJI), and the maximized sum by EWMA(25) of 

4611.66 was clearly even closer to that in GARCH(1,1) of 

4626.52. 

3.1 Comparing the outcomes of GARCH and ARCH 

When comparing the outcomes of the same GARCH(1,1) 

with the ARCH(15), the mean square difference previously 

calculated for ARCH(15) is 0.000762, whereas for the 

GARCH(1,1) the same difference is 0.00109. This 

outcome suggests ARCH(15) surpasses GARCH(1,1).  

On the other hand, knowing that GARCH(1,1) was 

optimized without the use of VIX data, as opposed to 

ARCH(15) while the Error is calculated based on that 

same VIX data. The similar negative difference for 

GARCH(1,1) was reached with SPX and DJI, giving MSE 

of 0.001092 and 0.001093 respectively. 

On the other hand, when repeating the optimization for 

GARCH(1,1), having replaced the objective function 

(2.13), used in the previous optimization, with the square 

difference between the GARCH(1,1) and the CBOE S&P 

100 Volatility Index (VXO). In this case, GARCH (1,1) 

outcomes change to ω =0.0000124, α =0.1158 and 

β =0.7602 slightly outperforming ARCH(15), with the 

average mean squared difference being 0.000499.  

 

Figure 3.1 – Squared difference between XEO 

GARCH(1,1) outcomes and VXO 

100 200 300 400 500
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0.010
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Figure 3.2 – Volatility XEO GARCH(1,1) outcomes and 

VXO 

 

As can be seen in the two figures 3.1 and 3.2, the extreme 

cases of squared difference exceeding 0.01 occur very 

rarely, twice in the two years of the daily forecast. It is also 

the case that the two are two trading periods in a row (24th 

and 25th of August 2015), which would probably be days 

of some market. 

When compared to the outcomes of its estimations, 79.7% 

of the GARCH forecasts were having an error of 2.5% or 

less, and at the same time, 99.6% of its estimations had an 

error exceed 10%. In this context, very comparable to 

ARCH(15). 

Doing the calculation for DJI for the same period of 525 

trading days the GARCH(1,1) returns mean square 

difference of 0.000340193, whereas the same data done by 

ARCH(15) had MSD of 0.00045. In parallel SPX data 

gave a mean square difference of 0.000501 under 

GARCH(1,1), while its ARCH(15) provided a somewhat 

better forecast with MSD of 0.0004993. 

4. CONCLUSION 

Observing ARCH outcomes for all three Indexes, it can be 

concluded that ARCH(11) would have been totally 

equivalent since the weight of zero was given to the last 

four periods. Another question is about i=5 and i=10, does 

it correspond to five working/trading days per week (with 

few exceptions of holidays)? 

Revising the outcomes of all three EWMA, ARCH, and 

GARCH, while having in mind to using 25 past periods of 

data for EWMA and 15 past periods of data for ARCH on 

one hand, and one single period for GARCH, in the 

majority of cases the GARCH turned out to outperform 

both. The outcome was the same in each of S&P100 

(XEO), and DOW JONES, with the small exception of 

S&P500 (SPX), where ARCH(15) did better than 

GARCH(1,1). 

The ARCH model should be revisited, given that the 

weight was not orderly in its changes with time, but rather 

followed a specific sequence. In addition to that, the next 

step will be to apply some different optimization methods 

for ARCH(p) and GARCH(p, q) and accordingly compare 

their outcomes. 
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