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ABSTRACT: The present research provides both necessary and sufficient 

conditions for the sum operator 𝒮𝜇,𝜂
𝑘  to exhibit boundedness and 

compactness when mapping from the weighted Bergman spaces 𝒜𝑣
𝑝
 to the 

weighted Banach spaces 𝐻𝑤
∞(𝐻𝑤

0 ). This unification encompasses the 

product of multiplication, differentiation, and composition operators. 

Furthermore, we provide an example to demonstrate that the boundedness 

of the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝
⟶ 𝐻𝑤

∞ does not necessarily imply the 

boundedness of the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝
⟶ 𝐻𝑤

0 . Also, we present an example 

of a bounded operator 𝒮𝜇,𝜂
𝑘 : 𝐻𝑣

∞ ⟶ 𝐻𝑤
∞, while the operator 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝

⟶

𝐻𝑤
∞ is not bounded. 

 
 

1. INTRODUCTION 

The interaction of the theory of composition 

operators and weighted composition operators with 

differentiation operators on various analytic 

function spaces gave rise to a new class of 

operators known as generalized weighted 

composition operators and Stević-Sharma type 

operators, which have been studied recently by 

many mathematicians [1, 2, 4, 14, 18].  

Consider 𝔻 as the unit disc in the complex plane ℂ, 

and let ℋ(𝔻) denote the space of functions that are 

analytic on 𝔻. Furthermore, let Λ(𝔻) represent the 

set of self-maps that are analytic on 𝔻. In a study 

conducted by Wang et al. [15], the following 

operator was introduced:  

𝒮𝜇,𝜂
𝑘 𝑔 = ∑𝑘

𝑗=0 𝜇𝑗 ⋅ 𝑔(𝑗) ∘ 𝜂      , 𝑔 ∈ ℋ(𝔻), (1) 

where 𝑘 ∈ ℕ0, 𝜂 ∈ Λ(𝔻) and 𝜇 = (𝜇𝑗)𝑗=0
𝑘 ;   𝜇𝑗 ∈

ℋ(𝔻). 

Consider a bounded and continuous function 

𝑣: 𝔻 → (0, ∞), which is commonly referred to as a 

weight. 

The weighted and little weighted spaces of analytic 

functions are defined as follows:  

𝐻𝑣
∞ = {ℎ ∈ ℋ(𝔻): ‖ℎ‖𝑣 = sup

𝜁∈𝔻
𝑣(𝜁)|ℎ(𝜁)| < ∞} 

and  

𝐻𝑣
0 = {ℎ ∈ ℋ(𝔻): lim

|𝜁|→1
𝑣(𝜁)|ℎ(𝜁)| = 0}. 

Obviously, the space 𝐻𝑣
∞, equipped with the norm 

‖ℎ‖𝑣 = sup
𝜁∈𝔻

𝑣(𝜁)|ℎ(𝜁)|, is a Banach space.  

Convergence in the norm in 𝐻𝑣
∞ corresponds to 

uniform convergence on compact subsets of 𝔻. 

Furthermore, it is evident that 𝐻𝑣
0 is a closed 
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subspace of 𝐻𝑣
∞. In the special case where 𝑣(𝜁) =

1, we have 𝐻𝑣
∞ = 𝐻∞. 

The weight �̃� associated with 𝑣 is is defined as 

follows:    

�̃�(𝜁) = (sup  {|ℎ(𝜁)|: 𝜁 ∈ 𝐻𝑣
∞, ‖𝜁‖𝑣 ≤ 1})−1. (2) 

 A weight 𝑣 is said to be radial if it satisfies 𝑣(𝜁) =
𝑣(|𝜁|) for all 𝜁 ∈ 𝔻. In the work of [5], it has been 

shown that: 

∥ ℎ ∥𝑣≤ 1  if and only if  ∥ ℎ ∥�̃�≤ 1; (3) 

�̃� ≥ 𝑣 > 0 and �̃� is continuous  and bounded; (4) 

 for all 𝜁 ∈ 𝔻, there is 𝑓𝜁 in 𝐵𝑣
∞, which is the closed 

unit ball in 𝐻𝑣
∞, such that  

|ℎ𝜁(𝜁)| =
1

�̃�(𝜁)
. (5) 

This article places significant importance on the 

condition (L1) introduced by Lusky [10].  

    inf
𝑛∈ℕ

𝑣(1 − 2−𝑛−1)

𝑣(1 − 2−𝑛)
> 0.    (L1) 

By an essential weight  𝑣, we mean that there exist 

a constant 𝑐 > 0 with 𝑣(𝜁) ≤ �̃�(𝜁) ≤ 𝑐𝑣(𝜁) for 

each 𝜁 ∈ 𝔻. From [6], we know that any radial 

weight satisfying condition (L1) is also essential. 

For instance, the weights 𝑣𝛼(𝜁) = (1 −

|𝜁|2)𝛼, 𝛼 > 0, 𝑣log(𝜁) = (1 − |𝜁|)log
3

1−|𝜁|
 and 

𝑤𝛽(𝜁) = (1 − log(1 − |𝜁|2))
𝛽

, 𝛽 < 0 are 

essential (see [10]). Weighted spaces of analytic 

functions arise organically when investigating 

growth conditions of analytic functions. They 

possess significant applications in various fields, 

including functional analysis, complex analysis, 

convolution equations, partial differential 

equations and distribution theory.  

Next, The weighted Bergman space is a class of 

analytic functions defined in the following manner: 

𝒜𝑣
𝑝 = {ℎ ∈ ℋ(𝔻): ‖ℎ‖𝑣,𝑝 =

(∫
𝔻

𝑣(𝜁)|ℎ(𝜁)|𝑝𝑑𝐴(𝜁))
1

𝑝 < ∞} ; 𝑝 ∈ [0, ∞), 

𝑑𝐴(𝜁) = 𝑑𝑥𝑑𝑦/𝜋 represent the normalized area 

measure. The Bergman space 𝐴𝑣
𝑝
 is a Banach space 

of analytic functions on 𝔻 with the norm ∥ ℎ ∥𝑣,𝑝. 

Based on the references [3, 9, 11], it has been 

established that when the weight in the weighted 

Bergman space is radial, the set of polynomials 

forms a dense subset of the space. In the case where 

the weight function is defined as 𝑣(𝜁) = 1, the 

resulting space is commonly referred to as the 

classical Bergman space, denoted as 𝒜𝑣
𝑝 = 𝐴𝑝. If 

𝑣(𝜁) = 𝑣𝛼(𝜁) = (1 − |𝜁|2)𝛼, 𝛼 > 0, then 𝒜𝑣
𝑝 =

𝐴𝛼,𝑝. To delve deeper into Bergman spaces, we 

recommend [8, 17].  

Additionally, we also take into consideration the 

weight 𝑣, which is defined as  

𝑣(𝜁) = 𝒱(|𝜁|2)    for each  𝑧 ∈ 𝔻, (6) 

 The weight function 𝒱 is an analytic function 

defined on the unit disk 𝔻. It satisfies the properties 

of being non-vanishing, strictly positive on the 

interval [0,1), and approaches zero as the limit of 

𝒱(𝑟) as 𝑟 approaches 1. These properties can be 

exemplified through various examples, as 

demonstrated in [16].  

1. If 𝒱𝛼(𝜁) = (1 − 𝜁)𝛼, where 𝛼 ≥ 1, then 

𝑣𝛼(𝜁) = (1 − |𝜁|2)𝛼. 

2. If 𝒱𝛼(𝜁) = exp
−

1

(1−𝜁)𝛼, where 𝛼 ≥ 1, then 

𝑣𝛼(𝜁) = exp
−

1

(1−|𝜁|2)
𝛼
. 

3. If 𝒱log
𝛽 (𝜁) = (1 − log(1 − 𝜁))

𝛽
, 𝛽 < 0, then 

𝑣log
𝛽 (𝜁) = (1 − log(1 − |𝜁|2))

𝛽
. 

4. If 𝒱(𝜁) = sin(1 − 𝜁), then 𝑣(𝑧) = sin(1 −
|𝜁|2).  

Let 𝑎 ∈ 𝔻. Then we define the function 𝑣𝑎(𝜁) =

𝒱(𝑎𝜁) and 𝜂𝑎(𝜁) =
𝑎−𝜁

1−𝑎𝜁
 for every 𝜁 ∈ 𝔻. Clearly, 

𝑣𝑎 is analytic, 𝜂𝑎(𝜂𝑎(𝜁)) = 𝜁 and 𝜂𝑎
′ (𝜁) =

−
1−|𝑎|2

(1−𝑎𝜁)2
, 𝜁 ∈ 𝔻. The map 𝜂𝑎 which interchanges 

𝑎 and 0 is called Möbius transformation. For non-

negative quantities 𝐾 and 𝑀, we denote 𝐾 ≍ 𝑀, 

indicating that 𝐾 ⪯ 𝑀 and 𝑀 ⪯ 𝐾, where 𝐾 ⪯ 𝑀 

implies the existence of a positive constant 𝐶 such 

that 𝐾 ≤ 𝐶𝑀. 
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2.  BOUNDEDNESS OF 𝓢𝝁,𝜼
𝒌 : 𝓐𝒗

𝒑
→ 𝑯𝒘

∞(𝑯𝒘
𝟎 )  

To establish the main results concerning the 

operators 𝒮𝜇,𝜂
𝑘 , it is necessary to introduce the 

following lemma, which has been proven in[1].  

Lemma 2.1  Consider a radial weight 𝑣, defined as 

shown in (6), which possesses the following 

property:  

sup
𝑎∈𝔻

sup
𝑧∈𝔻

𝑣(𝑧)|𝑣𝑎(𝜂𝑎(𝑧))|

𝑣(𝜂𝑎(𝑧))
≤ 𝐶 < ∞. 

Additionally, Suppose the weight function 𝑣 

satisfies condition (L1). In that case, there exists a 

positive constant 𝐶𝑣 such that for any 𝑓 ∈ 𝒜𝑣
𝑝
,  

|𝑓(𝑛)(𝑧)| ≤
𝐶𝑣‖𝑓‖𝑣,𝑝

(1 − |𝑧|2)
𝑛+

2

𝑝𝑣(𝑧)
1

𝑝

 

holds for each 𝑧 ∈ 𝔻 and 𝑛 ∈ ℕ0.  

We present the following theorem that provides a 

characterization the self map 𝜂 ∈ Λ(𝔻) and 𝜇 =
(𝜇𝑗)𝑗=0

𝑘 , 𝜇𝑗 ∈ ℋ(𝔻) which induce bounded 

operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞.  

Theorem 2.2 Let 𝑣 be a weight function defined as 

in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻). The conditions necessary and 

sufficient for the boundedness of the operator 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ are given by  

𝑀𝑗 = sup
𝑧∈𝔻

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

< ∞,    𝑗 = 0, … , 𝑘.

 (7) 

 Moreover, for the bounded operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶

𝐻𝑤
∞ we have  ‖𝒮𝜇,𝜂

𝑘 ‖
𝒜𝑣

𝑝
⟶𝐻𝑤

∞ ≍ ∑𝑘
𝑗=0 𝑀𝑗 ≍

max{𝑀𝑗:  𝑗 = 0,1, … , 𝑘}. (8)  

Proof. First let 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ be a bounded 

operator and Let 𝑢 = 𝑣
1

𝑝 and define �̃� as in (2). It is 

evident that if 𝑣 is a radial weight satisfying 

condition (L1), then 𝑢 also satisfies condition 

(L1). Moreover, since 𝑢 satisfies condition (L1), it 

is essential. Consequently, for every 𝑧 ∈ 𝔻, there 

exists a constant 𝛾 > 0 such that 𝑢(𝑧) ≤ �̃�(𝑧) ≤

𝛾𝑢(𝑧). Fix 𝑎 ∈ 𝔻. Based on (5), there is a function 

𝑓𝜂(𝑎) ∈ 𝐵𝑢
∞ ⊆ 𝐻𝑢

∞ such that  

|𝑓𝜂(𝑎)(𝜂(𝑎))| =
1

𝑢(𝜂(𝑎))
≍

1

𝑢(𝜂(𝑎))
=

1

𝑣(𝜂(𝑎))
1
𝑝

 (9) 

 and so  

|𝑓𝜂(𝑎)(𝜂(𝑎))|
𝑝

≍
1

𝑣(𝜂(𝑎))
. 

 To prove the condition (7) for 𝑗 = 𝑘, if we 

establish 𝐿𝜂(𝑎)(𝑧) = 𝜂𝜂(𝑎)
𝑘 (𝑧)𝑓𝜂(𝑎)(𝑧)(𝜂𝜂(𝑎)

′ (𝑧))
2

𝑝,

𝑧 ∈ 𝔻, then clearly  

‖𝐿𝜂(𝑎)‖
𝑣,𝑝

𝑝

≤ sup
𝑧∈𝔻

𝑣(𝑧)|𝑓𝜂(𝑎)(𝑧)|
𝑝

∫

𝔻

|𝜂𝜂(𝑎)(𝑧)|
𝑘𝑝

|𝜂𝜂(𝑎)
′ (𝑧)|

2
𝑑𝐴(𝑧)

≤ 1. 

 Thus 𝐿𝜂(𝑎) ∈ 𝒜𝑣
𝑝
, 𝐿𝜂(𝑎)

(𝑗)
(𝜂(𝑎)) = 0 for each 𝑗 =

0,1, … , 𝑘 − 1. Also,  

|𝐿𝜂(𝑎)
(𝑘)

(𝜂(𝑎))| ≍
𝑘!

(1−|𝜂(𝑎)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

. (10) 

 Thus, using (10), we get  

‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ ≥ ‖𝒮𝜇,𝜂

𝑘 𝐿𝜂(𝑎)‖
𝑤

≥ 𝑤(𝑎)|(𝒮𝜇,𝜂
𝑘 𝐿𝜂(𝑎))(𝑎)|

≥ ∑

𝑘

𝑗=0

𝑤(𝑎) |𝜇𝑗(𝑎)𝐿𝜂(𝑎)
(𝑗)

(𝜂(𝑎))| 

  ≥
𝑘!𝑤(𝑎)|𝜇𝑘(𝑎)|

𝛾(1−|𝜂(𝑎)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

 

                       ≥
𝑤(𝑎)|𝜇𝑘(𝑎)|

𝛾(1 − |𝜂(𝑎)|2)
𝑘+

2

𝑝𝑣(𝜂(𝑎))
1

𝑝

, 

 which implies that  

𝛾‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ ≥ sup

𝑎∈𝔻

𝑤(𝑎)|𝜇𝑘(𝑎)|

(1−|𝜂(𝑎)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

= 𝑀𝑘 .

 (11) 

 Thus we have established the condition (7) for 𝑗 =
𝑘. Now we shall prove the condition (7) for any 

0 ≤ 𝑗 ≤ 𝑘. For this, we assume the following 

inequality  
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𝑀𝑖 ≤ 𝛾(1 + 𝛾𝐶𝑣)𝑘−𝑖‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞   for each  𝑗 +

1 ≤ 𝑖 ≤ 𝑘, (12) 

 and establish it for 𝑖 = 𝑗. So, if we define define  

𝐺𝜂(𝑎)
(𝑧) = 𝜂𝜂(𝑎)

𝑗
(𝑧)𝑓𝜂(𝑎)(𝑧)(𝜂𝜂(𝑎)

′ (𝑧))
2

𝑝, 𝑧 ∈ 𝔻. 

Clearly ‖𝐺𝜂(𝑎)‖
𝑣,𝑝

≤ 1, 𝐺𝜂(𝑎)
(𝑖)

(𝜂(𝑎)) = 0 for all 

0 ≤ 𝑖 ≤ 𝑗 − 1 and  

|𝐺𝜂(𝑎)
(𝑗)

(𝜂(𝑎))| ≍
𝑗!

(1−|𝜂(𝑎)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

. (13) 

 Further, by applying Lemma 2.1 and (13), it can be 

easily seen that  

‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ ≥ ‖𝒮𝜇,𝜂

𝑘 𝐺𝜂(𝑎)‖
𝑤

≥ 𝑤(𝑎)|(𝒮𝜇,𝜂
𝑘 𝐺𝜂(𝑎))(𝑎)| 

 ≥ ∑𝑘
𝑖=0 𝑤(𝑎) |𝜇𝑖(𝑎)ℎ𝜂(𝑎)

(𝑖)
(𝜂(𝑎))| 

 ≥
𝑗!𝑤(𝑎)|𝜇𝑗(𝑎)|

𝛾(1−|𝜂(𝑎)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

−

𝐶𝑣‖𝐺𝜂(𝑎)‖
𝑣,𝑝

∑𝑘
𝑖=𝑗+1

𝑤(𝑎)|𝜇𝑖(𝑎)|

(1−|𝜂(𝑎)|2)
𝑖+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

. (14) 

 Thus it readily follows from (12) and (13) that  

𝑀𝑗 = sup
𝑎∈𝔻

𝑤(𝑎)|𝜇𝑗(𝑎)|

(1 − |𝜂(𝑎)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑎))
1

𝑝

 

 ≤ 𝛾 (‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ + 𝐶𝑣 ∥

𝐺𝜂(𝑎) ∥𝑣,𝑝 ∑𝑘
𝑖=𝑗+1

𝑤(𝑎)|𝜇𝑖(𝑎)|

(1−|𝜂(𝑎)|2)
1+

2
𝑝𝑣(𝜂(𝑎))

1
𝑝

) 

 ≤ 𝛾(1 + 𝐶𝑣 ∑𝑘
𝑖=𝑗+1 𝛾(1 +

𝛾𝐶𝑣)𝑘−𝑖)‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ 

 = 𝛾(1 + 𝛾𝐶𝑣)𝑘−𝑗‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ <

∞,    0 ≤ 𝑗 ≤ 𝑘. (15) 

 Hence 

∑𝑘
𝑗=0 𝑀𝑗 ≤ ∑𝑘

𝑗=0 𝛾(1 + 𝛾𝐶𝑣)𝑘−𝑗‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ .

 (16) 

This proves condition (7).  

Conversely, let us assume that condition (7) is 

satisfied. Consider ℎ ∈ 𝒜𝑣
𝑝
. By utilizing Lemma 

2.1, we obtain  

‖𝒮𝜇,𝜂
𝑘 ℎ‖

𝑤
= sup

𝑧∈𝔻
𝑤(𝑧) |∑

𝑘

𝑗=0

𝜇𝑗(𝑧)ℎ(𝑗)(𝜂(𝑧))|

≤ sup
𝑧∈𝔻

𝑤(𝑧) ∑

𝑘

𝑗=0

|𝜇𝑗(𝑧)ℎ(𝑗)(𝜂(𝑧))| 

 ≤ ∑𝑘
𝑗=0 sup

𝑧∈𝔻

𝐶𝑣∥ℎ∥𝑣,𝑝𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

 

               ≤ 𝐶𝑣 ∥ ℎ ∥𝑣,𝑝 ∑𝑘
𝑗=0 𝑀𝑗 . (17) 

 Thus,  

‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞ ≤ 𝐶𝑣 ∑𝑘

𝑗=0 𝑀𝑗 . (18) 

 Hence, it is established that the operator 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is bounded. Additionally, we have 

the inequality  

 max{𝑀𝑗: 0 ≤ 𝑗 ≤ 𝑘} ≤ ∑𝑘
𝑗=0 𝑀𝑗 ≤ (𝑘 +

1)max{𝑀𝑗:  0 ≤ 𝑗 ≤ 𝑘}. (19) 

 From (18), (16), and (19), it is evident that the 

asymptotic relation (8) follows. 

Corollary 2.3  Let 𝑣 be a weight function defined 

as in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻). Then 𝒟𝜇𝑗,𝜂
𝑗

: 𝒜𝑣
𝑝 ⟶ 𝐻𝑤

∞ is bounded 

if and only if (7) is satisfied for every 𝑗, 0 ≤ 𝑗 ≤ 𝑘.  

Proof. If the condition (7) holds, then by using the 

same technique of Theorem 2.2, it can be easily 

proved that the operator 𝒟𝜇𝑗,𝜂
𝑗

 is bounded. Also, if 

the operator 𝒟𝜇𝑗,𝜂
𝑗

 is bounded, then clearly the 

operator 𝒮𝜇,𝜂
𝑘 = ∑𝑘

𝑗=0 𝒟𝜇𝑗,𝜂
𝑗

 is bounded and hence 

the condition (7) follows from Theorem 2.2.  

 

Since 𝐻𝑤
0 ⊆ 𝐻𝑤

∞, the boundedness of 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 →

𝐻𝑤
∞ does not imply the boundedness of 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝 →

𝐻𝑤
0 .The subsequent theorem characterizes the 

boundedness of 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0 .  
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Corollary 2.4  Let 𝑣 be a weight function defined 

as in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻). Then 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0  is bounded if 

and only if 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is bounded, and 𝜇𝑗 ∈

𝐻𝑤
0 , 𝑗 = 0,1, … , 𝑘.  

Proof. Since 𝐻𝑤
0 ⊆ 𝐻𝑤

∞, if 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0  is 

bounded, then 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is also bounded. 

Further, if we define 𝑓𝑗(𝑧) = 𝑧𝑗, 0 ≤ 𝑗 =≤ 𝑘, then 

we have 𝑓𝑗 ∈ 𝒜𝑣
𝑝
. Hence 𝒮𝜇,𝜂

𝑘 𝑓𝑗 ∈ 𝐻𝑤
0  implies that 

𝜇𝑗 ∈ 𝐻𝑤
0 .  

Conversely, Assuming the boundedness of the 

operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ and considering 𝜇𝑗 ∈ 𝐻𝑤

0 ,

𝑗 = 0,1, … , 𝑘. Let 𝑓 ∈ 𝒜𝑣
𝑝
. If we take 𝑝(𝑧) as 

polynomial, then we have lim
|𝑧|→1

𝑤(𝑧)|𝒮𝜇,𝜂
𝑘 𝑝(𝑧)| =

lim
|𝑧|→1

𝑤(𝑧)|∑𝑘
𝑗=0 𝜇𝑗(𝑧)𝑝(𝑗)(𝜂(𝑧))| ≤

∑𝑘
𝑗=0 lim

|𝑧|→1
𝑤(𝑧)|𝜇𝑗(𝑧)|‖𝑝(𝑗)‖

∞
= 0. 

 Thus, 𝒮𝜇,𝜂
𝑘 𝑝 ∈ 𝐻𝑤

0 . Since it is a well-known fact 

that the set of polynomials is dense in 𝒜𝑣
𝑝
 for the 

radial weight 𝑣 (refer to [3, p.10], [9, p.343], or [11, 

p.134]), we can find a sequence of polynomials 

{𝑝𝑛}𝑛∈ℕ such that ‖𝑓 − 𝑝𝑛‖𝑣,𝑝 → 0 as 𝑛 → ∞. 

Hence,  

‖𝒮𝜇,𝜂
𝑘 𝑓 − 𝒮𝜇,𝜂

𝑘 𝑝𝑛‖
𝑤

≤ ‖𝒮𝜇,𝜂
𝑘 ‖

𝒜𝑣
𝑝

→𝐻𝑤
∞‖𝑓 − 𝑝𝑛‖𝑣,𝑝

→ 0  𝑎𝑠  𝑛 → ∞. 

As 𝐻𝑤
0  is a closed subspace of 𝐻𝑤

∞, we have 

𝒮𝜇,𝜂
𝑘 (𝒜𝑣

𝑝) ⊆ 𝐻𝑤
0 . Consequently, 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝 → 𝐻𝑤

0  is 

bounded.  

Remark 2.5 By referring to Theorem 2.2, 

Corollary 2.3, and Corollary 2.4, it becomes 

evident that the operator 𝒟𝜇𝑗,𝜂
𝑗

: 𝒜𝑣
𝑝 ⟶ 𝐻𝑤

0  is 

bounded if and only if 𝒟𝜇𝑗,𝜂
𝑗

: 𝒜𝑣
𝑝 ⟶ 𝐻𝑤

∞ is 

bounded, and 𝜇𝑗 ∈ 𝐻𝑤
0 , 𝑗 = 0,1, … , 𝑘.  

Based on Corollary 2.4, it can be deduced that if the 

operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0  is bounded, then 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is also bounded. However, it is 

important to note that the converse may not hold 

true. To illustrate this, we provide the following 

example: 

Example 2.6 Consider 𝑝 = 1, 𝑣(𝑧) = 1 − |𝑧|2 

and 𝑤(𝑧) = (1 −
|𝑧|2

4
)

4

. Define 𝜂(𝑧) =
𝑧

2
. Let 𝜇 =

(𝜇𝑗)𝑗=0
𝑘 , where 𝜇0(𝑧) = 𝑒𝑧 , 𝜇1(𝑧) = 𝑒𝑧2

 and 𝜇𝑖 =

0 for each 𝑖 = 2,3, … , 𝑘. Then we have  

𝑤(𝑧)|𝜇0(𝑧)|

(1 − |𝜂(𝑧)|2)
2

𝑝𝑣(𝜂(𝑧))
1

𝑝

≤ (1 −
|𝑧|2

4
) 𝑒|𝑧|

< 𝑒 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ  𝑧 ∈ 𝔻, 

𝑤(𝑧)|𝜇1(𝑧)|

(1 − |𝜂(𝑧)|2)
1+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

=
(1 −

|𝑧|2

4
)

4

|𝑒𝑧2
|

(1 −
|𝑧|2

4
)

3

(1 −
|𝑧|2

4
)

< 𝑒|𝑧|2

< 𝑒    for each  𝑧 ∈ 𝔻. 

 and  

𝑤(𝑧)|𝜇𝑖(𝑧)|

(1 − |𝜂(𝑧)|2)
𝑖+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

= 0    for each  𝑖

= 2,3, … , 𝑘. 

Thus, the condition of Theorem2.2 is satisfied and 

hence 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is bounded. However, for 

𝑧 = 𝑟, we observe that  

lim
|𝑧|→1

𝑤(𝑧)|𝜇0(𝑧)| = lim
𝑟→1

(1 −
𝑟2

4
)

4

𝑒𝑟 = (
3

4
)

4

𝑒

≠ 0. 

That is, 𝜇0 ∉ 𝐻𝑤
0 . Thus, according to Corollary2.4, 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0  is not bounded. 

 

It is evident that if the operato 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is 

bounded, then 𝒮𝜇,𝜂
𝑘 : 𝐻𝑣

∞ → 𝐻𝑤
∞ is also bounded. 

However, it is important to note that the converse 

may not hold true, as demonstrated in the following 

example:  

Example 2.7 Consider 𝑝 = 1, 𝑣(𝑧) = 1 − |𝑧|2 

and 𝑤(𝑧) = (1 − |𝑧|)4. Let 𝜂(𝑧) =
𝑧+1

2
 and 𝜇 =

(𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗(𝑧) =

1

(1−𝑧)𝑗
, 𝑖 = 2,3, … , 𝑘. We 

have  
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𝑤(𝑧)|𝜇0(𝑧)|

𝑣(𝜂(𝑧))
=

(1−|𝑧|)42|𝑧|

(1−|
𝑧+1

2
|2)

≤
2(1−|𝑧|)4

(
1−|𝑧|

2
)(

|𝑧|+1

2
)

≤ 8(1 −

|𝑧|)3 < ∞, (20) 

 
𝑤(𝑧)|𝜇1(𝑧)|

(1−|𝜂(𝑧)|2)𝑣(𝜂(𝑧))
=

(1−|𝑧|)4 1

|1−𝑧|2

(1−|
𝑧+1

2
|2)

2 ≤
(1−|𝑧|)2

(1−|
𝑧+1

2
|2)

2 ≤

(1−|𝑧|)2

(
1−|𝑧|

2
)

2
(

|𝑧|+1

2
)

2 ≤ 16 < ∞. (21) 

 By examining (20) and (21), it becomes evident 

that the operator 𝒮𝜇,𝜂
𝑘 : 𝐻𝑣

∞ → 𝐻𝑤
∞ is bounded. 

Looking at it from a different angle, we can 

consider  

𝑤(𝑧)|𝜇1(𝑧)|

(1 − |𝜂(𝑧)|2)
1+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

=
(1 − |𝑧|)4 1

|1−𝑧|2

(1 − |
𝑧+1

2
|2)

4 . 

For 𝑧 = 𝑟,  

𝑤(𝑟)|𝜇1(𝑟)|

(1 − |𝜂(𝑟)|2)3𝑣(𝜂(𝑟))
=

(1 − 𝑟)2

(1 − (
𝑟+1

2
)2)

4

→ ∞    as  𝑟 → 1. 

Therefore, we can conclude that the operator 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is unbounded.  

3.  COMPACTNESS OF 𝓢𝝁,𝜼
𝒌 : 𝑯𝒗 → 𝑯𝒘

∞(𝑯𝒘
𝟎 )  

In order to characterize the self map 𝜂 ∈ Λ(𝔻) and 

𝜇 = (𝜇𝑗)𝑗=0
𝑘  , which induce compact operator 𝒮𝜇,𝜂

𝑘 , 

we need the following result and the proof can be 

deduced from Proposition 3.11 [7]. 

Lemma 3.1  Consider 𝜇 = (𝜇𝑗)𝑗=0
𝑘  be such that 

𝜇𝑗 ∈ ℋ(𝔻) and 𝜂 ∈ 𝛬(𝔻). Then 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ 

is compact if and only if 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ is 

bounded and for any bounded sequence {𝑓𝑛}𝑛∈ℕ in 

𝒜𝑣
𝑝
 such that 𝑓𝑛 → 0 uniformly on compact subsets 

of 𝔻 as 𝑛 → ∞, ‖𝒮𝜇,𝜂
𝑘 𝑓𝑛‖

𝑤
→ 0 as 𝑛 → ∞.  

Theorem 3.2  Let 𝑣 be a weight function defined as 

in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻). The conditions necessary and 

sufficient for the compactness of the operator 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ are given by 

lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

= 0, 𝑗 = 0,1, … , 𝑘.

 (22) 

 Proof. First, we assume that condition (22) holds 

and 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is bounded. By considering the 

function 𝑓𝑗(𝑧) = 𝑧𝑗 , 𝑧 ∈ 𝔻 in 𝒜𝑣
𝑝
, we can have  

𝐾𝑗 = sup
𝑧∈𝔻

𝑤(𝑧)|𝜇𝑗(𝑧)| < ∞, 0 ≤ 𝑗 ≤ 𝑘. (23) 

 Now let {𝑓𝑛}𝑛∈ℕ be a bounded sequence in 𝒜𝑣
𝑝
 

such that it converges to zero uniformly on compact 

subsets of 𝔻. To show that 𝒮𝜇,𝜂
𝑘  is compact, in view 

of Lemma 3.1, it is enough to show that 

‖𝒮𝜇,𝜂
𝑘 𝑓𝑛‖

𝑤
→ 0 as 𝑛 → ∞. Based on condition (22), 

we can conclude that for any 𝜖 > 0, there exists 𝑟 ∈
(0,1) such that whenever 𝑟 < |𝜂(𝑧)| < 1, the 

following inequality holds:  

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

< 𝜖, 0 ≤ 𝑗 ≤ 𝑘. (24) 

 Since the sequence {𝑓𝑛}𝑛∈ℕ converges to zero 

uniformly on compact subsets of 𝔻, we can apply 

Cauchy’s estimates to conclude that {𝑓𝑛
(𝑗)

}
𝑛∈ℕ

,

𝑗 = 0,1, … , 𝑘 also converges to zero uniformly on 

compact subsets of 𝔻. Therefore, there exists 𝑛0 ∈
ℕ such that, for |𝜂(𝑧)| ≤ 𝑟 and 𝑛 ≥ 𝑛0, the 

following holds:  

|𝑓𝑛
(𝑗)

(𝜂(𝑧))| < 𝜖, 𝑗 = 0,1, … , 𝑘. (25) 

 Using (23) and (25), we have  

sup
|𝜂(𝑧)|≤𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)𝑓𝑛
(𝑗)

(𝜂(𝑧))|

≤ 𝜖 sup
|𝜂(𝑧)|≤𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)| 

 ≤ 𝜖𝐾𝑗 , 𝑗 = 0,1, … , 𝑘. (26) 

 As the sequence {𝑓𝑛}𝑛∈ℕ is bounded in 𝒜𝑣
𝑝
, we 

have sup
𝑛

‖𝑓𝑛‖𝑣,𝑝 ≤ 𝑀. Consequently, combining 

(24), (26), and Lemma 2.1, we can deduce that:  

‖𝒮𝜇,𝜂
𝑘 𝑓𝑛‖

𝑤
= sup

𝑧∈𝔻
𝑤(𝑧) |∑

𝑘

𝑗=0

𝜇𝑗(𝑧)𝑓𝑛
(𝑗)

(𝜂(𝑧))| 
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= max { sup
𝑟<|𝜂(𝑧)|<1

𝑤(𝑧) |∑

𝑘

𝑗=0

𝜇𝑗(𝑧)𝑓𝑛
(𝑗)

(𝜂(𝑧))| , 

 

    sup
|𝜂(𝑧)|≤𝑟

𝑤(𝑧)|∑𝑘
𝑗=0 𝜇𝑗(𝑧)𝑓𝑛

(𝑗)
(𝜂(𝑧))|} 

≤ ∑

𝑘

𝑗=0

sup
𝑟<|𝜂(𝑧)|<1

𝑤(𝑧)|𝜇𝑗(𝑧)𝑓𝑛
(𝑗)

(𝜂(𝑧))| 

 

    + ∑𝑘
𝑗=0 sup

|𝜂(𝑧)|≤𝑟
𝑤(𝑧)|𝜇𝑗(𝑧)𝑓𝑛

(𝑗)
(𝜂(𝑧))| 

≤ ∑

𝑘

𝑗=0

sup
𝑟<|𝜂(𝑧)|<1

𝐶𝑣‖𝑓𝑛‖𝑣,𝑝𝑤(𝑧)|𝜇𝑗(𝑧)|

(1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

+ 𝜖 ∑

𝑘

𝑗=0

𝐾𝑗

≤ ((𝑘 + 1)𝑀𝐶𝑣 + ∑

𝑘

𝑗=0

𝐾𝑗) 𝜖. 

 we can conclude that the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ 

is compact.  

Conversely, assuming that the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 →

𝐻𝑤
∞ is compact. Clearly 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝 → 𝐻𝑤

∞ is 

bounded, we can observe that it is also bounded. 

Now, we aim to establish condition (22). 

Specifically, for 𝑗 = 𝑘, let {𝑧𝑛}𝑛∈ℕ be a sequence 

in 𝔻 such that |𝜂(𝑧𝑛)| → 1 as 𝑛 → ∞, satisfying 

the following: lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑘(𝑧)|

(1−|𝜂(𝑧)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

=

lim
𝑛→∞

𝑤(𝑧𝑛)|𝜇𝑘(𝑧𝑛)|

(1−|𝜂(𝑧𝑛)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

. 

After selecting a subsequence, we can assume that 

there exists 𝑛0 ∈ ℕ such that |𝜂(𝑧𝑛)|𝑛 ≥
1

2
 for 

every 𝑛 ≥ 𝑛0. Moreover, analogous to (9), we can 

find 𝑓𝜂(𝑧𝑛) ∈ 𝐵𝑣
∞ satisfying the following 

expression:  

|𝑓𝜂(𝑧𝑛)(𝜂(𝑧𝑛))| ≍
1

𝑣(𝜂(𝑧𝑛))
1
𝑝

. (27) 

 Let us consider the function for each 𝑛 as follows:  

𝑔𝑛(𝑧) = 𝜂𝜂(𝑧𝑛)
𝑘 (𝑧)(𝜂𝜂(𝑧𝑛)

′ (𝑧))
2

𝑝𝑓𝜂(𝑧𝑛)(𝑧)𝑧𝑛,    𝑧 ∈

𝔻. (28) 

 Clearly 𝑔𝑛 ∈ 𝒜𝑣
𝑝
 and ‖𝑔𝑛‖𝑣,𝑝 ≤ 1. Also, 

𝑔𝑛
(𝑗)

(𝜂(𝑧𝑛)) = 0, 𝑗 < 𝑘 and  

|𝑔𝑛
(𝑘)

(𝜂(𝑧𝑛))| ≍
𝑘! |𝜂(𝑧𝑛)|𝑛

(1 − |𝜂(𝑧𝑛)|2)
𝑘+

2

𝑝𝑣(𝜂(𝑧𝑛))
1

𝑝

. 

As 𝑔𝑛 → 0 uniformly on compact subsets of 𝔻, we 

can apply Lemma 3.1 to conclude that 

‖𝒮𝜇,𝜂
𝑘 𝑔𝑛‖

𝑤
→ 0 as 𝑛 → ∞. Therefore, we have the 

following:  

‖𝒮𝜇,𝜂
𝑘 𝑔𝑛‖

𝑤
≥ 𝑤(𝑧𝑛) |∑

𝑘

𝑗=0

𝜇𝑗(𝑧𝑛)𝑔𝑛
(𝑗)

(𝜂(𝑧𝑛))|

≥
𝑘! 𝑤(𝑧𝑛)|𝜇𝑘(𝑧𝑛)||𝜂(𝑧𝑛)|𝑛

𝜆(1 − |𝜂(𝑧𝑛)|2)
𝑘+

2

𝑝𝑣(𝜂(𝑧𝑛))
1

𝑝

 

 ≥
𝑤(𝑧𝑛)|𝜇𝑘(𝑧𝑛)|

2𝜆(1−|𝜂(𝑧𝑛)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

. (29) 

 Based on (29), we can deduce that: 

lim
𝑛→∞

𝑤(𝑧𝑛)|𝜇𝑘(𝑧𝑛)|

(1−|𝜂(𝑧𝑛)|2)
𝑘+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

= 0. (30) 

This establishes condition (22) for 𝑗 = 𝑘. Now, let 

us consider the case where 0 ≤ 𝑗 ≤ 𝑘 − 1. 

Similarly, we assume the existence of a sequence 

{𝑧𝑛}𝑛∈ℕ in 𝔻 such that |𝜂(𝑧𝑛)| → 1 as 𝑛 → ∞. We 

can choose this sequence such that:  

 lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑖(𝑧)|

(1−|𝜂(𝑧)|2)
𝑖+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

=

lim
𝑛→∞

𝑤(𝑧𝑛)|𝜇𝑖(𝑧𝑛)|

(1−|𝜂(𝑧𝑛)|2)
𝑖+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

= 0 (31) 

for 𝑗 + 1 ≤ 𝑖 ≤ 𝑘 and we establish (31) for 𝑖 = 𝑗. 

For this, consider:  

lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

=

lim
𝑛→∞

𝑤(𝑧𝑛)|𝜇𝑗(𝑧𝑛)|

(1−|𝜂(𝑧𝑛)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

. (32) 

 Again, similar to (28), define: ℎ𝑛(𝑧) =

𝜂𝜂(𝑧𝑛)
𝑗

(𝑧)(𝜂𝜂(𝑧𝑛)
′ (𝑧))

2

𝑝𝑓𝜂(𝑧𝑛)(𝑧)𝑧𝑛,    𝑧 ∈ 𝔻. 
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 Thus, {ℎ𝑛}𝑛∈ℕ ∈ 𝒜𝑣
𝑝
 and ‖ℎ𝑛‖𝑣,𝑝 ≤ 1. Also, 

clearly ℎ𝑛
(𝑖)(𝜂(𝑧𝑛)) = 0 for all 0 ≤ 𝑖 ≤ 𝑗 − 1 and  

|ℎ𝑛
(𝑗)

(𝜂(𝑧𝑛))| ≍
𝑗!|(𝜂(𝑧𝑛))|𝑛

(1−|𝜂(𝑧𝑛)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

. (33) 

 Due to the uniform convergence of ℎ𝑛 → 0 on 

compact subsets of 𝔻, once again employing 

Lemma 3.1, ‖𝒮𝜇,𝜂
𝑘 ℎ𝑛‖

𝑤
→ 0 as 𝑛 → ∞. Thus, using 

(33) and Lemma 2.1, it follows that  

 ‖𝒮𝜇,𝜂
𝑘 ℎ𝑛‖

𝑤
≥

𝑤(𝑧𝑛)|𝜇𝑗(𝑧𝑛)ℎ𝑛
(𝑗)

(𝜂(𝑧𝑛))| −

𝑤(𝑧𝑛) ∑𝑘
𝑖=𝑗+1 |𝜇𝑖(𝑧𝑛)ℎ𝑛

(𝑖)
(𝜂(𝑧𝑛))| 

 ≥
𝑗!𝑤(𝑧𝑛)|𝜇𝑗(𝑧𝑛)|

2𝜆(1−|𝜂(𝑧𝑛)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

−

∑𝑘
𝑖=𝑗+1

𝐶𝑣∥ℎ𝑛∥𝑣,𝑝𝑤(𝑧𝑛)|𝜇𝑖(𝑧𝑛)|

(1−|𝜂(𝑧𝑛)|2)
𝑖+

2
𝑝𝑣(𝜂(𝑧𝑛))

1
𝑝

. (34) 

 Further, using (31), (34) implies that  

lim
𝑛→∞

𝑤(𝑧𝑛)|𝜇𝑗(𝑧𝑛)|

(1 − |𝜂(𝑧𝑛)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧𝑛))
1

𝑝

= 0. 

The verification of condition (22) establishes its 

validity, thereby finalizing the proof of the 

theorem.  

Corollary 3.3 Let 𝑣 be a weight function defined as 

in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻). The conditions necessary and 

sufficient for the compactness of the operator 

𝒟𝜇𝑗,𝜂
𝑗

: 𝒜𝑣
𝑝 → 𝐻𝑤

∞ are given by  

lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

= 0. (35) 

  

Next, we shall utilize the lemma presented in [12] 

(specifically, Lemma 2.1) to characterize the 

compactness of the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0 . 

Lemma 3.4  Suppose 𝑤 is an arbitrary weight and 

𝐾 is a closed set in 𝐻𝑤
0 . The set 𝐾 is compact if and 

only if it is bounded and satisfies the following 

condition  

lim
|𝑧|→1

sup
𝑓∈𝐾

𝑤(𝑧)|𝑓(𝑧)| = 0. 

Remark 3.5 When the set 𝐾 is not closed, the term 

"compact" in Lemma 3.4 can be substituted with 

the term "relatively compact." 

Theorem 3.6  Let 𝑣 be a weight function defined as 

in Lemma 2.1, and let 𝑤 be an arbitrary weight 

function. Suppose 𝜇 = (𝜇𝑗)𝑗=0
𝑘 , where 𝜇𝑗 ∈ ℋ(𝔻) 

and 𝜂 ∈ 𝛬(𝔻) are given by  

lim
|𝑧|→1

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

= 0, 0 ≤ 𝑗 ≤ 𝑘. (36) 

Proof. If condition (36) holds, then clearly, 

condition of Theorem 2.2 is satisfied. Thus, the 

operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝
→ 𝐻𝑤

∞ is bounded. Also, since 

(1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝 ≤ 𝐶𝑗 , 𝑗 = 0,1, … , 𝑘, 

from (36), we have  

lim
|𝑧|→1

𝑤(𝑧)|𝜇𝑗(𝑧)|

= lim
|𝑧|→1

𝑤(𝑧)|𝜇𝑗(𝑧)|(1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

(1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

 

 ≤ lim
|𝑧|→1

𝐶𝑗𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

= 0,

𝑗 = 0,1, … , 𝑘. 

 Thus, 𝜇𝑗 ∈ 𝐻𝑤
0 , 0 ≤ 𝑗 ≤ 𝑘 and hence 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝

→

𝐻𝑤
0  is bounded. Let 𝑓 ∈ 𝒜𝑣

𝑝
. By utilizing Lemma 

2.1, we obtain:  

𝑤(𝑧)|(𝒮𝜇,𝜂
𝑘 𝑓)(𝑧)| =

𝑤(𝑧)|∑𝑘
𝑗=0 𝜇𝑗(𝑧)𝑓(𝑗)(𝜂(𝑧))| ≤

∑𝑘
𝑗=0

𝐶𝑣∥𝑓∥𝑣,𝑝𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

. (37) 

 Consider the sets 𝑆 = {𝑓 ∈ 𝒜𝑣
𝑝: ‖𝑓‖𝑣,𝑝 ≤ 1} and 

𝐾 = 𝒮𝜇,𝜂
𝑘 (𝑆). It is evident that 𝐾 is bounded in 𝐻𝑤

0 . 

Therefore, by utilizing condition (36) in (37), we 

can conclude that  

lim
|𝑧|→1

sup
𝑓∈𝑆

𝑤(𝑧)|(𝒮𝜇,𝜂
𝑘 𝑓)(𝑧)| = 0. (38) 

 Therefore, considering Lemma 3.4, we can 

establish the compactness of the operator. 

𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
0 . 
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Conversely, suppose that the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 →

𝐻𝑤
0  is compact. Since the operator 𝒮𝜇,𝜂

𝑘 : 𝒜𝑣
𝑝 → 𝐻𝑤

0  

is bounded, we have already shown that  

lim
|𝑧|→1

𝑤(𝑧)|𝜇𝑗(𝑧)| = 0, 0 ≤ 𝑗 ≤ 𝑘. (39) 

 As the operator 𝒮𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 → 𝐻𝑤
∞ is compact, we 

can apply Corollary 2.4 to conclude that  

lim
𝑟→1

sup
|𝜂(𝑧)|>𝑟

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

= 0, 𝑗 = 0,1, … , 𝑘.

 (40) 

 To prove (36), fix 0 ≤ 𝑗 ≤ 𝑘 and let 𝜖 > 0. Then 

according to (40), there exists 𝑟𝑗 ∈ (0,1) such that 

whenever 𝑟𝑗 < |𝜂(𝑧)| < 1, we have  

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

< 𝜖. (41) 

 Let  

𝐸𝑗 = inf
|𝑡|≤𝑟𝑗

(1 − |𝑡|2)
𝑗+

2

𝑝𝑣(𝑡)
1

𝑝. (42) 

 Then it follows from (42) that  

𝐸𝑗 ≤ (1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝, (43) 

for |𝜂(𝑧)| ≤ 𝑟𝑗. Let 𝜖𝑗 = 𝜖𝐸𝑗 . Based on (39), we 

can deduce the existence of 𝛿𝑗 ∈ (0,1) such that 

 

𝑤(𝑧)|𝜇𝑗(𝑧)| < 𝜖𝑗 (44) 

 whenever 𝛿𝑗 < |𝑧| < 1. Further, it follows from 

(43) and (44) that  

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

< 𝜖 (45) 

 whenever |𝑧| > 𝛿𝑗  and |𝜂(𝑧)| ≤ 𝑟𝑗. Thus, (41) and 

(45), implies that  

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1−|𝜂(𝑧)|2)
𝑗+

2
𝑝𝑣(𝜂(𝑧))

1
𝑝

< 𝜖 (46) 

 whenever |𝑧| > 𝛿𝑗 . By establishing condition (36), 

we have successfully completed the proof of the 

theorem.  

Remark 3.7 From Theorem , Corollary and 

Theorem, it is clear that The operator 𝒟𝜇𝑗,𝜂
𝑗

: 𝒜𝑣
𝑝 →

𝐻𝑤
0  is compact if and only if  

lim
|𝑧|→1

𝑤(𝑧)|𝜇𝑗(𝑧)|

(1 − |𝜂(𝑧)|2)
𝑗+

2

𝑝𝑣(𝜂(𝑧))
1

𝑝

= 0 

4.  CONCLUSION 

This paper characterize the self map 𝜂 and 𝜇 =
(𝜇𝑗)𝑗=0

𝑘  such that 𝜇𝑗 ∈ ℋ(𝔻), which induce 

bounded and compact operators 𝒮𝜇,𝜂
𝑘  from the 

weighted Bergman spaces 𝒜𝑣
𝑝
 to the weighted 

Banach spaces 𝐻𝑤
∞(𝐻𝑤

0 ) (Theorem 2.2 and 

Theorem 3.2). Also, we give an example to show 

the boundedness of the operator 𝑇𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
∞ 

not necessarily imply the operator 𝑇𝜇,𝜂
𝑘 : 𝒜𝑣

𝑝 ⟶ 𝐻𝑤
0  

is bounded. 
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